

Dr. O. P. Raman Dept of Matternatics

> For T. D. C. Part II Paper - 3 Abstract (Modern) Algebra

INTEGRAL DOMAIN

6y . Define an integral domain with examples.

Definition A commutative ring with unity having at least two elements is called an integral domain if there are no divisors of zero in the ring.

Thus an integral domain D is a ring under two binary compositions, addition and multiplication if the following hold:

(i) D is a commutative ring

(ii) D has unity (i.e. the identity element of multiplication)

(iii) D has no divisors of zero

More explicitly, a set D (with at least two elements) is called an integral domain under the binary operations, addition (+) and multiplication (·) if the following postulates hold:

For addition (+)

1. Closure Law: $a, b \in D \implies a + b \in D$.

2. Commutative Law: a + b = b + a for all $a, b \in D$.

3. Associative Law: (a+b)+c=a+(b+c) for all $a,b,c\in D$.

4. Existence Law of Identity: There exists an element 0 ∈ D (called zero element) such that a + 0 = a for all $a \in D$.

5. Existence Law for Inverse Elements: $a \in D$ implies there exists an element $x \in D$ (called additive inverse or negative element) such that a+x=0.

The additive inverse of a is written as -a.

For multiplication (·)

6. Closure Law: $a, b \in D \implies a \cdot b \in D$.

7. Associative Law: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in D$.

8. Commutative Law: $a \cdot b = b \cdot a$ for all $a, b \in D$.

9. Existence Law of Identity: There exists an element 1 ∈ D (called unity) such that

 $a \cdot 1 = a$ for all $a \in D$.

10. Absence of Divisors of Zero: $a \cdot b = 0 \Rightarrow$ either a = 0 or b = 0 or both a = 0 and b = 0, $\forall a, b \in D$.

11. For addition (+) and multiplication (·) $a \cdot (b+c) = a \cdot b + a \cdot c,$

 $(b+c) \cdot a = b \cdot a + c \cdot a$ for all $a, b, c \in D$.

Solution As the addition of two integers is an integer, the closure law holds for + . Also we know that the associative and commutative laws of addition hold for integers.

The zero element in Z is 0. The additive inverse of $a \in Z$ is $-a \in Z$.

Hence (Z, +) is an abelian group.

Again the multiplication of two integers is an integer. So the closure law holds for (\cdot) . Also we know that the associative law holds for multiplication in Z.

Again we know for any three integers a, b, c we have

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

and

$$(b+c)\cdot a=b\cdot a+c\cdot a.$$

Hence $(R, +, \cdot)$ is a ring.

Now, for two integers a, b we know

$$ab = ba$$
 and $ab = 0 \Rightarrow$ either $a = 0$ or $b = 0$.

.. The commutative law holds and divisors of zero are absent. Also $1 \in Z$ is the unity element.

.: Z is an integral domain under ordinary addition and multiplication.

Fields

Definition

Let F be a set and let two binary operations called addition (denoted by +) and multiplication (denoted by \cdot) be defined over the set F. Then the system $(F, +, \cdot)$ is called a field F if the following conditions are satisfied:

(1) Laws of addition:

- (i) $a + b \in F$; $a, b \in F$ (closure law)
- (ii) a + b = b + a; $a, b \in F$ (commutative law)
- (iii) a + (b + c) = (a + b) + c; $a, b, c \in F$ (associative law)
- (iv) There exists an element 0 in F called zero such that $a + 0 = 0 + a = a \forall a \in F$.
- (v) For each element $a \in F$, there exists an element -a in F called negative of a such that a + (-a) = (-a) + a + 0.

(2) Laws of multiplication:

- (i) $a \cdot b \in F$; $a, b \in F$; (closure law)
- (ii) $a \cdot b = b \cdot a$; $a, b \in F$ (commutative law)
- (iii) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$; $a, b, c \in F$ (associative law)
- (iv) There exists an element 1 in F called the unity element such that

$$a \cdot 1 = 1 \cdot a = a \ \forall \ a \in F.$$

(v) For each non-zero element a in F, there exists an element a^{-1} in F called the inverse of a such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$.

(3) Distributive laws:

- (i) $a \cdot (b+c) = a \cdot b + a \cdot c$; $a, b, c \in F$
- (ii) $(b+c) \cdot a = b \cdot a + c \cdot a$; $a, b, c \in F$

The set of numbers of the form $a + b\sqrt{2}$ where a and b are rational numbers is a substitution. field under addition and multiplication.

Soln. Let the set be denoted by S.

We will first of all show that the set S is an Abelian group w.r.t. addition.

Let
$$x = a_1 + b_1 \sqrt{2}$$
, $y = a_2 + b_2 \sqrt{2}$ and $z = a_3 + b_3 \sqrt{2}$. Then

(i)
$$x + y = (a_1 + a_2) + (b_1 + b_2)\sqrt{2} \in S$$

(ii)
$$x + y = (a_1 + a_2) + (b_1 + b_2)\sqrt{2}$$

and $y + x = (a_2 + a_1) + (b_2 + b_1)\sqrt{2}$
 $= (a_1 + a_2) + (b_1 + b_2)\sqrt{2}$, for rational numbers are commutative
 $\therefore x + y = y + x$.

(iii)
$$x + (y + z) = \{a_1 + (a_2 + a_3)\} + \{b_1 + (b_2 + b_3)\}\sqrt{2}$$

 $= (a_1 + a_2 + a_3) + (b_1 + b_2 + b_3)\sqrt{2}.$
Similarly, $(x + y) + z = (a_1 + a_2 + a_3) + (b_1 + b_2 + b_3)\sqrt{2}$
 $\therefore x + (y + z) = (x + y) + z.$

- (iv) The zero of S is $0 + 0 \cdot \sqrt{2} = 0$.
- (v) The inverse of $a + b\sqrt{2}$ is $-a b\sqrt{2} \in S$.

$$\begin{array}{c} \text{ (i)} & \text{ y.x} = (a_1 a_2 + 2b_1 b_2) + (a_1 b_2 + b_1 a_2) \sqrt{2} \in S \\ \text{ (ii)} & \text{ y.x} = (a_2 a_1 + 2b_2 b_1) + (a_2 b_1 + b_2 a_1) \sqrt{2} \\ \text{ (iii)} & \text{ y.x} = (a_2 a_1 + 2b_1 b_2) + (a_1 b_2 + b_1 a_2) \sqrt{2} \end{array}$$

$$\begin{aligned} & = (a_1 + b_1 \sqrt{2}) \{ (a_2 + b_2 \sqrt{2})(a_3 + b_3 \sqrt{2}) \} \\ & = (a_1 + b_1 \sqrt{2}) \{ (a_2 a_3 + 2b_2 b_3) + (a_2 b_3 + b_2 a_3) \sqrt{2} \} \\ & = \{ a_1 a_2 a_3 + 2(a_1 b_2 b_3 + a_2 b_3 b_1 + a_3 b_1 b_2) \} \\ & + \sqrt{2} \{ 2b_1 b_2 b_3 + (a_2 a_3 b_1 + a_3 a_1 b_2 + a_1 a_2 b_3) \} \end{aligned}$$

Similarly,

$$(x \cdot y) \cdot z =$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z.$$

(iv) The unity element is $1 + 0 \cdot \sqrt{2} = 1$.

(v) The multiplicative inverse of a non-zero element $a + b\sqrt{2}$ is

The multiplicative inverse of a non-zero element
$$\frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{(a+b\sqrt{2})(a-b\sqrt{2})} = \frac{a-b\sqrt{2}}{a^2-2b^2}$$
$$= \left(\frac{a}{a^2-2b^2}\right) - \left(\frac{b}{a^2-2b^2}\right)\sqrt{2}$$

Thus the non-zero elements of S form an Abelian group w.r.t. multiplication.

The distributive laws can be satisfied similarly by actual calculation.

Hence the set S is a field.

Every field is an integral domain but the converse is not necessarily true.

proof: Since a field F is a commutative ring with unity, therefore in order to show that Proof: Since a superior of the proof of the Let $a, b \in F$ with $a \neq 0$ such that ab = 0.

We shall show that b = 0.

emen

F spa b)=(a)

dsince

nultiplica

Since $a \neq 0$, a^{-1} exists and we have

$$ab = 0 \Rightarrow a^{-1}(ab) = a^{-1}(0) = 0$$

$$\Rightarrow (a^{-1}a)b = 0$$

$$\Rightarrow 1b = 0; \because a^{-1}a = 1$$

$$\Rightarrow b = 0; \because 1b = b.$$

Similarly, let $b \neq 0$ and ab = 0,

Similarly, let
$$b \neq 0$$
 and $ab = 0$.

Then we have, $ab = 0 \Rightarrow (ab)b^{-1} = 0b^{-1}$

$$\Rightarrow a(bb^{-1}) = 0$$

$$\Rightarrow a \cdot 1 = 0$$

$$\Rightarrow a = 0.$$

This establishes the fact that if $a, b \in F$, then $ab = 0 \implies a = 0$ or b = 0.

Hence a field has no zero divisors.

Therefore every field is an integral domain.

But the converse is not true. i.e., every integral domain is not necessarily a field.

Example of an integral domain which is not a field.

The ring of integers I is a commutative ring with unity. Also I does not possess zero divisors. We know that if $a, b \in I$, such that ab = 0, then either a or b must be zero.

Hence the ring of integers I is an integral domain but it is not a field since the multiplicative inverse of any non-zero integer $\in I$ does not belong to I.

(The multiplicative inverse comes out to be a rational number).

Theorem

A finite commutative ring without zero divisors is a field.

Every finite integral domain is a field.

Proof: Let D be a finite commutative ring without zero divisors having n elements D is a field (i) we must produce an elements D is a field D i **Proof**: Let *D* be a finite commutative $a_1, a_2, a_3, ..., a_n$. In order to prove that *D* is a field (i) we must produce an element of $a_1, a_2, a_3, ..., a_n \in D$ and (ii) we should show that every non-zero element of $a_1, a_2, a_3, ..., a_n \in D$ and (iii) we should show that every non-zero element of $a_1, a_2, a_3, ..., a_n \in D$ and (iii) $a_1, a_2, a_3, ..., a_n$. In order to prove that b such that $a_1, a_2, a_3, ..., a_n$. In order to prove that b such that $b \in D$ s such that $1a = a \ \forall \ a \in D$ and (11) we should such that $1a = a \ \forall \ a \in D$ and $1a = a \$

Let $a \neq 0 \in D$.

Consider the *n* products aa_1 , aa_2 , aa_3 , ..., aa_n . All these are elements of D since D is therefore it is closed with respect to multiplication. an integral domain and therefore it is closed with respect to multiplication.

Suppose on the contrary that $aa_i = aa_j$ for $i \neq j$.

Then $a(a_i - a_j) = 0$

Since D is without zero divisors and $a \neq 0$,

$$\therefore (1) \Rightarrow a_i - a_j = 0 \Rightarrow a_i = a_j \text{ contradicting } i \neq j.$$
Hence $aa_1, aa_2, aa_3, \dots, aa_j \text{ are all the } i$

Hence aa_1 , aa_2 , aa_3 , ..., aa_n are all the *n* distinct elements of *D* placed in some one. So one of these elements will be equal to a. Thus there exists an element, say a_p such that $aa_p = a = a_p a$; : D is commutative.

We shall show that this element a_p is multiplicative identity of D. Let y be an element of D.

Then from the above discussion, for some $x \in D$, we shall have ax = y = xa. Now, $a_p y = a_p(ax)$; :: ax = y

Now,
$$a_p y = a_p(ax)$$
; $ax = y$
 $= (a_p a)x$
 $= ax$; $a_p a = a$
 $= y = ya_p$; D is commutative.

Thus $a_p y = y = y a_p \forall y \in D$.

Therefore a_p is the unity element of the ring D. Let us denote it by 1.

Now $1 \in D$. Therefore from the above discussion, one of the *n* products $aa_1, aa_2, ..., aa_n$ will be equal to 1. Thus there exists an element say $b \in D$ such that ab = 1 = ba.

:. b is the multiplicative inverse of the non-zero element $a \in D$. Thus every non-zero element of D is inversible. Hence D is a field.