Dr. O. P. Raman Dept. of Matternatics

The centre of a group.

Definition. The set Z of all self-conjugate elements of a group G is called the centre of G. Symbolically

 $Z = \{z \in G : zx = xz + x \in G\}.$

(Punjab 1968; B.H.U. 71; Meerut 90)

Theorem 4. The centre Z of a group G is a normal subgroup of G. (Banaras 1971; Meerut 81, 90; Agra 86)

Proof. We have $Z = \{z \in G : zx = xz + x \in G\}$.

First we shall prove that Z is a subgroup of G.

Let $z_1, z_2 \in Z$. Then $z_1x = xz_1$ and $z_2x = xz_2$ for all $x \in G$.

We have $z_2x = xz_2 + x \in G$

 $\Rightarrow z_2^{-1} (z_2 x) z_2^{-1} = z_2^{-1} (x z_2) z_2^{-1}$

 $\Rightarrow xz_2^{-1} = z_2^{-1} x + x \in G$

 $\Rightarrow z_2^{-1} \in Z$.

Now $(z_1z_2^{-1})$ $\dot{x}=z_1$ $(z_2^{-1}x)=z_1$ $(xz_2^{-1})=(z_1x)$ $z_2^{-1}=(xz_1)$ $z_2^{-1}=x$ $(z_1z_2^{-1})$.

 $\vdots \quad z_1z_2^{-1} \in Z.$

Thus $z_1, z_2 \in Z \Rightarrow z_1 z_2^{-1} \in Z$.

.. Z is a subgroup of G.

Now we shall show that Z is a normal subgroup of G. Let $x \in G$ and $z \in Z$. Then

 $xzx^{-1} = (xz) x^{-1} = (zx) x^{-1} = z \in Z.$

Thus $x \in G, z \in Z \Rightarrow xzx^{-1} \in Z$.

:. Z is a normal subgroup of G.

maliser of an element is not necessarily a normal subgroup of G.

(Meerut 1985, 91; BH.U. 88)

Solution. Consider the group S_3 , the symmetric group of permutations on three symbols a, b, c. We have $S_1 = \{I, (ab), (bc), (ca), (abc), (acb)\}$. Let N(ab) denote the normaliser of the element $(ab) \in S_3$. We shall show that N(ab) is not a normal subgroup of S_3 . Let us calculate the elements of N(ab). Obviously $(ab) \in N(ab)$. Also $I \in N(ab)$ because I(ab) = (ab) I

Now (bc) (ab)=(abc) and (ab) (bc)=(acb). Thus (bc) does not commute with (ab). Therefore $(bc) \notin N(ab)$. Again

(ca) (ab) = (acb) and (ab) (ca) = (abc).

Thus (ca) $(ab) \neq (ab)$ (ca) and therefore $(ca) \notin N(ab)$. Similarly we can verify that $(abc) \notin N(ab)$ and $(acb) \notin N(ab)$. Hence

 $N(ab) = \{I, (ab)\}.$

Now we shall show that N(ab) is not a normal subgroup of S_3 . Take the element $(bc) \in S_3$ and the element $(ab) \in N(ab)$. We have $(bc)(ab)(bc)^{-1}=(bc)(ab)(cb)=(abc)(cb)=(ac) \notin N(ab)$. Therefore N(ab) is not a normal subgroup of S_3 .

cyclic prove that G is abelian.

Let Z denote the centre of a group G. If G/Z is (Meerut 1978, 81; I.C S. 90; Guru Nanak 89, Madural 88)

Solution It is given that G/Z is cyclic. Let Zg be a generator of the cyclic group G/Z where g is some element of G.

Let $a, b \in G$. Then to prove that ab = ba. Since $a \in G$, therefore $Za \in G/Z$. But G/Z is cyclic having Zg as a generator. Therefore there exists some integer m such that $Za = (Zg)^m = Zg^m$, because Z is a normal subgroup of G. Now $a \in Za$. Therefore

 $Za = Zg^m \Rightarrow a \in Zg^m \Rightarrow a = z_1g^m$ for some $z_1 \in Z$.

Similarly $b=z_2g^n$ where $z_1\in \mathbb{Z}$ and n is some integer.

Now $ab = (z_1 g^m) (z_2 g^n) = z_1 g^m z_2 g^n$ $= z_1 z_2 g^m g^n$ [:: $z_1 \in \mathbb{Z} \Rightarrow z_1 g^m = g^m z_1$] $= z_1 z_2 g^{m+n}$.

Again $ba = z_2 g^n z_1 g^m = z_2 z_1 g^n g^m = z_2 z_1 g^{n+m}$ = $z_1 z_2 g^{m+n}$ [: $z_1 \in \mathbb{Z} \Rightarrow z_1 z_2 = z_2 z_1$]

ab=ba.

Since ab=ba + a, $b \in G$, therefore G is abelian.

Normalizer of an element of a group.

Definition. If $a \in G$, then N(a), the normalizer of a in G is the set of all those elements of G which commute with a. Symbolically $N(a) = \{x \in G : ax = xa\}$.

(I.A.S. 1975; Nagarjuna 78; Meerut 81, 84, 88; B.H.U. 88)

Theorem 2. The normalizer N (a) of $a \in G$ is a subgroup of G. (Agra 1986; I.A.S. 72; Kanpur 86; Meerut 84, 88; Punjab 70)

Proof. We have $N(a) = \{x \in G : ax = xa\}$.

Let $x_1, x_2 \in N(a)$. Then $ax_1 = x_1 a, ax_2 = x_2 a$.

First we show that $x_2^{-1} \in N(a)$.

We have $ax_2=x_2a \Rightarrow x_2^{-1} (ax_2) x_2^{-1}=x_2^{-1} (x_2a) x_2^{-1}$ $\Rightarrow x_2^{-1}a=ax_2^{-1} \Rightarrow x_2^{-1} \in N(a).$

Now we shall show that $x_1x_2^{-1} \in N(a)$.

We have $a(x_1x_2^{-1})=(ax_1) x_2^{-1}=(x_1a) x_2^{-1}$ = $x_1(ax_2^{-1})=x_1(x_2^{-1}a)=(x_1x_2^{-1}) a$.

 $x_1x_2^{-1} \in N(a)$.

Thus $x_1, x_2 \in N(a) \Rightarrow x_1 x_2^{-1} \in N(a)$

N (a) is a subgroup of G.

. -. Conjugate elements.

Definition.

If a, b be two elements of a group G, then b is said to be conjugate to a if there exists an element $x \in G$ such that

 $b = x^{-1} ax$

If $b=x^{-1}$ ax, then b is also called the transform of a by x. If b is conjugate to a then symbolically we shall write bea and this relation in G will be called the relation of conjugacy. Thus $b \sim a$ iff $b = x^{-1} ax$ for some $x \in G$.

Theorem 1. The relation of conjugacy is an equivalence relation on G. (Vikram 1976; Banaras 61; Kanpur 88)

Proof. Reflexivity. If a is any element of G, then we have $a=e^{-1}ae \Rightarrow a \sim a$.

Thus $a \sim a + a \in G$. Therefore the relation is reflexive.

Symmetry. We have $a \sim b \Rightarrow a = x^{-1} bx$ for some $x \in G$ $\Rightarrow xax^{-1} = x (x^{-1}bx)x^{-1} \Rightarrow xax^{-1} = b \Rightarrow b = (x^{-1})^{-1}ax^{-1} \text{ where } x^{-1} \in G$ >b~a.

Therefore the relation is symmetric.

Transitivity. Let $a \sim b$, $b \sim c$. Then $a = x^{-1}bx$, $b = y^{-1}cy$ for some $x, y \in G$. From this we get

 $a = x^{-1} (y^{-1} cy) x$ [: $b = y^{-1} cy$] $=(yx)^{-1}c(yx)$ where $yx \in G$.

a~c and thus the relation is transitive. Hence the relation of conjugacy in a group G is an equivalence relation. Therefore it will partition G into disjoint equivalence classes called classes of conjugate elements. These classes will be such that

- (i) any two elements of the same class are conjugate.
- no two elements of different classes are conjugate.

The collection of all elements conjugate to an element $a \in G$ will be symbolically denoted by C(a) or by \bar{a} . Thus

 $C(a) = \{x \in G : x \sim a\}.$

C(a) will be called the conjugate class of a in G. We have $(y^{-1}ay) \sim a$ for all $y \in G$. Also if $b \sim a$ then b must be equal to y^{-1} ay for some $y \in G$. Therefore $C(a) = \{y^{-1}ay : y \in G\}$.

If G is a finite group, then the number of distinct elements in

C(a) will be denoted by ca.