the rumber of elements conjugate 1o a in G is the rudex of the mor-
malizer of a in G.
(Nagarjuna 1978; 1.A.S. 72; Meerat 74; Kanpur 87: B.H.U. 33,

Proof. We have
x,yeGmmthcsamcnghtcosctofN(a)mG
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<« N (@)x=N(a) y [ x & N(a)x, y € N(a)y. Note that
il i is a subgroup, then x = H
; > x.)
<= Xy~ &€ N(a) (" if H is a subgroup, then
Ha=Hb<ab' & H)

| e
< @xy~l==xy-ig [by def. of N(a))

< x~! (axy~') y=x-1 (xy~'a) y
<> X7 ’a:c-:.—,_v-luy
<> X, ¥ give rise to the same conjugate of a.

Hence the first result follows.

Now consider the right coset decomposition of G with respect
to the subgroup N (a). We have just proved that if x, yG are in
the same right coset of N (a) in G, then they give the same con-
jugate of a. Further if x, y are in different right cosets of N (a) in
G, then they giverise to different conjugates of a. The reason is
that if x, y give the same conjugate of @, then they must belong
to the same right coset of N(a) in G. Thus there is a one-to-one
correspondence between the right cosets N(a) in G and the con-
jugatesof a. So ifGisa finite group, then

¢,=the number of distinct elements in C (a)
=the number of distinct right cosets of N (a) in G
0(G)
o [N(a)]

C 3}/ y. If G is a [inite group, then

—the index of N (@) in G=

WA uoan, (G
v (6)=2 TIN(@)]

where this-sum runs over one element a in each conjugate class.
(Punjab 1970; Meerut 84P)

Proof. We know that the relation of conjugacy is an equiva-
lence relation on G. Therefore it partitions (.?into disjoint .eon-
jugate classes. The union of all distinct con]ug_ate classes will be
edual to G and two distinct conjugate classes will have no fom-.
mon element. Since G is @ finite group, therefore the numbzr of
distinct conjugate classes of G will be finite, say equal :10 k.t :ﬁ;
pose C (a) denotes the conjugate class of g in G and ¢, deno =
aumber of elements in this class. If C (ay), C(G2)suevvveeers
are the k distinct conjugate classes of G, then

G=C (@) U C (@) U-..:U € (@)

ts in
= the number of elements i0 G=the number of elemen



C (a1)+the number of elements in C (a3)+...... +the number o-f
elements in C (ax).
[." two distinct conjugate classes have no common element)
= 0 (G)=2 c,, the summation being run over one element a

in each conjugate class

o (G)
wikitisostay™ (N (a)l

by previous theorem.
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T 2% Let G bé finite group a
hen {RE"EVESS cquation of G can be written

0 (G)=0(2Z)+ x» 2(0)
agzZ °IN(a)]’
where the summation runs over one element a In each conjugate class
containing more than one element.

e
e ———

nd Z be the centre of G,
as

pProof. The class equation of G is

o (G) : :
0 (G)=2Z O[TM)T’ the summation being extended over one

element a in cach conjugate class.

Now a & Z < o [N(a)]=0(G) < o(G)/o [N(a)]=1 < the
conjugsate class of @ in G contains only one element. Thus lhp
qumber of conjugate classes each having only one element is
10 0 (Z). If aisan clecment of any one of these conjugate
classes, We have o (G)/o [N(a)]=1. Hence the class equation of ¢

wakes the desired form

G
0 (G)=0 (D)+ = .
HEZ 0[_ ( )]

If o (G)=p" where p is a prime number, then the

Theorem 7.
centre Z#1e}
(Agra 1986; 1

A.S. 72; Guru Nanak 90; Meerut 74; B.H.U. 87)




Proof. By the class equation of G, we have
o ) (1)

0 @me D)+ T 5NN’
where the summation runs over one element @ in cach conjugate
class containing more than one element.

Now ¥ a & G, N(a) is a subgroup of G. Thereiore by
Lagrange’'s theorem, o ([N (a)] is a divisor of o (G). Also
@& Z = N(a)#G = o[N(a)] < o (G). Therefore if ¢ & Z, then
o [N(a)] must be of the form p"a where 1, is some integer such
that | < n, < n. Suppose there are exactly z eleents in Zie.,
let 0 (Z)=z. Then the class equation (i) gives
ger such that

il € n, <M

sl &)

L
p"=z+£“?-; , where each »n, is some inte
a

gL
ol =4 p" LP"U'

where n,’s are some positive integers each being less than n.

Now p | p». Also p divides each term in the 2 of the right
hand side of (2) because each n, < n. Thus we see thatp i< a
divisor of the right hand side of (2). Therefore p is a divisor of z.
Now eeZ. Therefore z#0. Therefore z is a positive integer
divisible by the prime p. Therefore z > 1. Hence Z must contain
an element besides e. Therefore Z#{e}.

(ir 6)/ 7. If o0 (G)=p® where p is a prime number, then G Is
abelian. (Agra 1986; Kumayun 77; Kanpur 80; Meerut 81;
B.H.U. 87; G.N.D.U. Amritsar 87)

Proof. We shall show that the centre Z of G is equal to G

itself. Then obviously G will be an abelian group.
Since p is a prime number, therefore by the previous theorem

' Z+#{e}. Therefore o (Z) > 1. But Z is a subgroup of G, therefore
o (Z) must be a divisor of o (G) i.e., o (Z) must be a divisor of p*.
Since p is prime, therefore either o (Z)=p or p*.

If 0 (Z)=p?, then Z= and our proof is complete.

Now suppose that o (Z)=p. Then o(Z)<0(G) because p<p®.
Therefore there must be an element which is in G but which is
notin Z. LetacsG and asgZ.

Now N(a) is a subgroup of G and a € N(a). Also x € Z
= xa=ax and this implies x &€ N(a). Thus Z C N(a). Since
a & Z, therefore the number of elements in N(a)is > p ie.,
o[N(a)] > p. But order of N(a) must be a divisor of p*. Therefore




o {N(a)] must be equal to p°.

thus we get a contradiction.
Therefore it is not possible that o (Z)=p. Hence the only

possibility is that

0 (£)=p* = Z=G = G is abelian,

en N(a)=G. Therefore a=Z and



