MASS SPECTROMETRY

Mass Spectrometry:

- Molecular weight can be obtained from a very small sample.
- It does not involve the absorption or emission of light.
- A beam of high-energy electrons breaks the molecule apart.
- The masses of the fragments and their relative abundance reveal information about the structure of the molecule.

The main use of Mass spectrometry in organic chemistry is:

- Determine the molecular mass of organic compounds.
- Determine the molecular formula of organic compounds.

How do we achieve this?

- Persuade the molecule to enter the vapor phase (can be difficult)
- · Produce ions from the molecules that enter the gas phase
- Separate the ions according to their mass-to-charge ratios (m/z))
- · Measure and record these ions
- Isotopes: present in their usual abundance.
- Hydrocarbons contain 1.1% C-13, so there will be a small M⁺¹ peak.
- If Br is present, M⁺² is equal to M⁺.
- If Cl is present, M⁺² is one-third of M⁺.
- If iodine is present, peak at 127, large gap.
- If N is present, M+ will be an odd number.
- If S is present, M⁺² will be 4% of M⁺.

A Mass Spectrometer: A mass spectrometer is designed to do three things

- · Convert neutral atoms or molecules into a beam of positive (or negative) ions
- Separate the ions on the basis of their mass-to-charge ratio (m/z)
- Measure the relative abundance of each ion.
- Electron Ionization MS in the ionization chamber, the sample is bombarded with a beam of high-energy electrons collisions between these electrons and the sample result loss of electrons from sample molecules and formation of positive ions

$$H = \begin{pmatrix} H \\ -C - H \end{pmatrix} + e^{-} \longrightarrow \begin{bmatrix} H \\ -C - H \\ H \end{bmatrix} + 2e^{-}$$

$$Molecular ion$$

A radical cations

- Mass spectrum: a plot of the relative abundance of each ion versus mass-to-charge ratio
- Base peak: the most abundant peak; assigned an arbitrary intensity of 100.
- The relative abundance of all other ions is reported as a % of abundance of the base peak

Fragmentation by electron impact:

$$A \stackrel{\cdot}{\cdot} B \stackrel{70 \text{ eV}}{}_{\text{gas phase}}$$

Overall process is:

$$A-B \xrightarrow{e^-} AB^+ + A^+ + B^+ + A^- + B^+ + AB^+$$