Crystal Field Stabilization Energy In establish complexes, the d-orbitals of the central metal cation are split into two sets of an interest of the opening energy sever $(t)_2$ or non-energy of t_{2g} set is lowered by 0.4 Δ_0 (= 4 Dq) while the energy of t_{2g} set is lowered by 0.4 Δ_0 mercased by 0.6 Δ_0 (= 6 Dq) relative to the hypothetical energy state. In other words we can s_i three of the d orbitals (i.e. t_{2g} orbitals) are stabilised by 0.4 Δ_0 per electron and two of the d-orbitals ϵ_{p} orbitals) are destabilised by 0.6 δ_{0} per electron. Thus energy of each electron in t_{2g} orbitals decay by $-0.4~\Delta_0$ while in e_g orbitals increases by $+0.60~\Delta_0$, - and + signs indicate decrease and increases For d' case, the electron occupies a t_{2g} orbitals, which has an energy of $-0.4~\Delta_0$ relative t_0 the energy respectively. burycentre of the d-orbitals. The complex can thus be said to be stabilized to the extent of 0.4 compared to the barycentre. This quantity is termed as crystal field stabilization energy. Thus for a^l complex, electronic configuration is $r_{2g}^l e_g^0$ CFSE = -0.4×1 $\Delta_0 = -0.4$ Δ_0 For d^2 complex, electronic configuration is $t_{2x}^2 e_x^4$ CFSE = $-0.4 \times 2 \Delta_0 = -0.8 \Delta_0$ For d^3 complex, electronic configuration is $t_{2g}^3 e_g^0$ CFSE = $-0.4 \times 3 \Delta_0 = -1.2 \Delta_0$ For d^4 high spin complex, electronic configuration is s_{rs}^3 , e_{rs}^4 CFSE = $[-0.4 \times 3 + 0.6 \times 1]$ $\Delta_0 = -0.6 \Delta_0$ $CFSE = [-0.4 p + 0.6 q] \Delta_0$ their mean energy (or hypothetical energy). Thus, in case of an octahedral complex with the configuration $t_{2g}^{p} e_{g}^{0}$, the crystal field stabilisation The CFSE may be defined as "The net energy of a complex which stabilised the complex relative to hypothetical energy state." CFSE is a measure of the net energy of occupation of the d-orbital relative | Weak field / Qh Spe'r | | | | Strong field (800 Spe n | |-----------------------|-------------------------------|---|--|---| | - 1 | Configuration | CFSE. | Configuration | CFSE CFSE N | | 1 | d _a | -0.4×1 $\Delta_0 = -0.4$ Δ_0 | 128 | - 0.4 × 1 Δ_0 = - 0.4 Δ_0 | | 1 | dig. | $-0.4 \times 2 \ \Delta_0 = -0.8 \ \Delta_0$ | t_{2g}^{2} | $-0.4 \times 2 \Delta_0 = -0.8 \Delta_0$ | | 1 | de. | $-0.4 \times 3 \ \Delta_0 = -1.2 \ \Delta_0$ | r_{2g}^3 | $-0.4 \times 3 \ \Delta_0 = -1.2 \ \Delta_0$ | | 1 | r_{eg}^{1} c_{g}^{1} | $[-0.4 \times 3 + 0.6 \times 1]$ $\Delta_0 = -0.6$ Δ_0 | r2g | -0.4 × 4 \Delta_0 = -1.6 \Delta_0 | | 1 | 1, 4 | $[-0.4 \times 3 + 0.6 \times 2]$ $\Delta_0 = 0.0$ Δ_0 | 15g | -0.4 × 5 \Delta_0 = -2.0 \Delta_0 | | 1 | 12 12 | $[-0.4 \times 4 + 0.6 \times 2]$ $\Delta_0 = -0.4$ Δ_0 | 128 | -0.4 × 6 \(\Delta_0 = -2.4 \(\Delta_0 \) | | 1 | 12 12 | [-0.4 × 5 + 0.6 × 2] $\Delta_0 = -0.8 \ \Delta_0$ | t_{2g}^6 c_g^1 | $[-0.4 \times 6 + 0.6 \times 1]$ $\Delta_0 = -1.8$ Δ_0 | | 1 | s_{ig}^{0} σ_{g}^{2} | [-0.4 × 6 + 0.6 × 2] Δ_0 = -1.2 Δ_0 | $t_{2g}^{\delta} a_g^2$ | $[-0.4 \times 6 + 0.6 \times 2] \Delta_0 = -1.2 \Delta_0$ | | 1 | 1/4 1/4 | $[-0.4 \times 6 + 0.6 \times 3]$ $\Delta_0 = -0.6$ Δ_0 | 12g eg 3 | [-0.4 × 6 + 0.6 × 3] $\Delta_0 = -0.6 \ \Delta_0$ | | ř | $d_{x}^{A} d_{x}^{A}$ | $[-0.4 \times 6 + 0.6 \times 4] \Delta_0 = 0.0 \Delta_0$ | ϵ_{2g}^{4} ϵ_{g}^{4} | $[-0.4 \times 6 + 0.6 \times 4] \Delta_0 = 0.0 \Delta_0$ |