Crystal Field Stabilization Energy
In establish complexes, the d-orbitals of the central metal cation are split into two sets of an interest of the opening energy sever $(t)_2$ or non-energy of t_{2g} set is lowered by 0.4 Δ_0 (= 4 Dq) while the energy of t_{2g} set is lowered by 0.4 Δ_0 mercased by 0.6 Δ_0 (= 6 Dq) relative to the hypothetical energy state. In other words we can s_i three of the d orbitals (i.e. t_{2g} orbitals) are stabilised by 0.4 Δ_0 per electron and two of the d-orbitals ϵ_{p} orbitals) are destabilised by 0.6 δ_{0} per electron. Thus energy of each electron in t_{2g} orbitals decay

by $-0.4~\Delta_0$ while in e_g orbitals increases by $+0.60~\Delta_0$, - and + signs indicate decrease and increases For d' case, the electron occupies a t_{2g} orbitals, which has an energy of $-0.4~\Delta_0$ relative t_0 the energy respectively. burycentre of the d-orbitals. The complex can thus be said to be stabilized to the extent of 0.4

compared to the barycentre. This quantity is termed as crystal field stabilization energy. Thus for a^l complex, electronic configuration is $r_{2g}^l e_g^0$ CFSE = -0.4×1 $\Delta_0 = -0.4$ Δ_0 For d^2 complex, electronic configuration is $t_{2x}^2 e_x^4$

CFSE = $-0.4 \times 2 \Delta_0 = -0.8 \Delta_0$ For d^3 complex, electronic configuration is $t_{2g}^3 e_g^0$ CFSE = $-0.4 \times 3 \Delta_0 = -1.2 \Delta_0$

For d^4 high spin complex, electronic configuration is s_{rs}^3 , e_{rs}^4 CFSE = $[-0.4 \times 3 + 0.6 \times 1]$ $\Delta_0 = -0.6 \Delta_0$

 $CFSE = [-0.4 p + 0.6 q] \Delta_0$ their mean energy (or hypothetical energy).

Thus, in case of an octahedral complex with the configuration $t_{2g}^{p} e_{g}^{0}$, the crystal field stabilisation The CFSE may be defined as "The net energy of a complex which stabilised the complex relative to

hypothetical energy state." CFSE is a measure of the net energy of occupation of the d-orbital relative

Weak field / Qh Spe'r				Strong field (800 Spe n
- 1	Configuration	CFSE.	Configuration	CFSE CFSE N
1	d _a	-0.4×1 $\Delta_0 = -0.4$ Δ_0	128	- 0.4 × 1 Δ_0 = - 0.4 Δ_0
1	dig.	$-0.4 \times 2 \ \Delta_0 = -0.8 \ \Delta_0$	t_{2g}^{2}	$-0.4 \times 2 \Delta_0 = -0.8 \Delta_0$
1	de.	$-0.4 \times 3 \ \Delta_0 = -1.2 \ \Delta_0$	r_{2g}^3	$-0.4 \times 3 \ \Delta_0 = -1.2 \ \Delta_0$
1	r_{eg}^{1} c_{g}^{1}	$[-0.4 \times 3 + 0.6 \times 1]$ $\Delta_0 = -0.6$ Δ_0	r2g	-0.4 × 4 \Delta_0 = -1.6 \Delta_0
1	1, 4	$[-0.4 \times 3 + 0.6 \times 2]$ $\Delta_0 = 0.0$ Δ_0	15g	-0.4 × 5 \Delta_0 = -2.0 \Delta_0
1	12 12	$[-0.4 \times 4 + 0.6 \times 2]$ $\Delta_0 = -0.4$ Δ_0	128	-0.4 × 6 \(\Delta_0 = -2.4 \(\Delta_0 \)
1	12 12	[-0.4 × 5 + 0.6 × 2] $\Delta_0 = -0.8 \ \Delta_0$	t_{2g}^6 c_g^1	$[-0.4 \times 6 + 0.6 \times 1]$ $\Delta_0 = -1.8$ Δ_0
1	s_{ig}^{0} σ_{g}^{2}	[-0.4 × 6 + 0.6 × 2] Δ_0 = -1.2 Δ_0	$t_{2g}^{\delta} a_g^2$	$[-0.4 \times 6 + 0.6 \times 2] \Delta_0 = -1.2 \Delta_0$
1	1/4 1/4	$[-0.4 \times 6 + 0.6 \times 3]$ $\Delta_0 = -0.6$ Δ_0	12g eg 3	[-0.4 × 6 + 0.6 × 3] $\Delta_0 = -0.6 \ \Delta_0$
ř	$d_{x}^{A} d_{x}^{A}$	$[-0.4 \times 6 + 0.6 \times 4] \Delta_0 = 0.0 \Delta_0$	ϵ_{2g}^{4} ϵ_{g}^{4}	$[-0.4 \times 6 + 0.6 \times 4] \Delta_0 = 0.0 \Delta_0$