Correlation Analysis

Types of Correlation

Types of Correlation - Type I

Based on Direction of Movement

Correlation

Positive Correlation

Negative Correlation

Types of Correlation Type I

Positive Correlation: The correlation is said to be positive, if the values of two variables changing in same direction.

Example: Public Expenditure & sales, Height & weight.

- Negative Correlation: The correlation is said to be negative correlation when the values of variables change with opposite direction.
- Example: Price & qty. demanded.

Direction of the Correlation

Indicated by sign; (+) or (-).

- Positive relationship Variables change in the same direction.
 - As X is increasing, Y is increasing
 - As X is decreasing, Y is decreasing

Example: As height increases, so does weight.

- Negative relationship Variables change in opposite directions.
 - As X is increasing, Y is decreasing
 - As X is decreasing, Y is increasing
 - Example: As TV time increases, grades decrease

More examples

- Positive relationships
- water consumption and temperature.
- study time and grades.

- Negative relationships:
- alcohol consumption and driving ability.
- Price & quantity demanded

Types of Correlation - Type II

Based on Number of Variables

Types of Correlation Type II

- Simple correlation: Under simple correlation problem there are only two variables are studied.
- Multiple Correlation: Under Multiple Correlation three or more than three variables are studied. Ex. $Q_d = f(P,P_C,P_S,t,y)$
- Partial correlation: analysis recognizes more than two variables but considers only two variables keeping the other constant.
- Total correlation: is based on all the relevant variables, which is normally not feasible.

Types of Correlation - Type III

Based on Kind of Relationship

Correlation

LINEAR

NON LINEAR

Types of Correlation Type III

Linear correlation: Correlation is said to be linear when the amount of change in one variable tends to bear a consistent change in the other variable. The graph of the variables having a linear relationship will form a straight line.

Ex
$$X = 1$$
, 2, 3, 4, 5, 6, 7, 8,
 $Y = 5$, 7, 9, 11, 13, 15, 17, 19,
 $Y = 3 + 2x$

For each unit change in one variable, there is consistent change in another variable.

Non Linear correlation: The correlation would be non linear if the amount of change in one variable does not bear a constant ratio to the amount of change in the other variable.