Thermal Physics

Rctilinear flow of Heat

Lecture - 2
Dr. Tarun Kumar Dey,
Associate professor Department of Physics ,
L.S College; BRA Bihar University, Muzzaffarpur

Youtube channel - Tarun Kumar Dey
Online Course Link:
http::/findmementor.com/mentee/view
details/tkdeyphy

Rectilinear flow of Heat (Fourier Equation for flow of Heat) :

Let us consider a long metal bar of uniform cross -sectional area A, heated at one end.

The bar lies along the x - axis whose origin is at the hot end. Heat flows along this axis .

Now consider a thin slice with two parallel planes A and B perpendicular to the length of the bar at distances x and $x+\delta x$ from the hot end .

If θ be the temperature of the plane A
and $\frac{d \theta}{d x}$ be the heat which leaves the slice at B per second.
Then
$Q=-K A \frac{d \theta}{d x}$
$\mathrm{Q}-\mathrm{dQ}=-\mathrm{KA} \frac{d}{d x}\left(\theta+\frac{d}{\theta d x} \delta \mathrm{x}\right)$,

Where K is the thermal conductivity of the bar . The negative sign indicates that the temperature decreases with increases x.

Then the heat gained by the slice is

$$
\begin{align*}
\mathrm{dQ} & =-\mathrm{KA} \frac{d}{\theta d x}-\left\{-\mathrm{KA} \frac{d}{d x}\left(\theta+\frac{d}{\theta d x} \delta \mathrm{x}\right)\right\}, \\
& =\text { KA } \frac{d 2}{d x 2} \delta \mathrm{x} . \tag{3}
\end{align*}
$$

If dQ be the amount gained by the slice is used partly in raising the temperature of the slice and partly in radiation from the surface of the slice .

Let ρ be the density and s be the specific heat of the material of the bar , then mass of the slice is

$$
=A \delta x \rho
$$

Let E be the emissive power of the surface and θ be the average excess temperature of the surface over the surrounding, then according to Newton's Law of Cooling , the heat radiated per second from the surface is

$$
\begin{equation*}
\mathrm{dQ}_{2}=E \mathrm{p} \delta \mathrm{x} \theta \tag{5}
\end{equation*}
$$

Hence we have

$$
K A d^{2} \theta / d x^{2} \delta x=A \delta x \rho s \frac{d}{\theta d t}+E p \delta x \theta
$$

This can be written as,

$$
\begin{equation*}
\frac{d \theta}{d t}=\mathrm{h} \mathrm{~d}^{2} \theta / \mathrm{dx}^{2}-\mu \theta \tag{6}
\end{equation*}
$$

Where

$$
\begin{align*}
\mathrm{h} & =\frac{K}{\rho s} \\
\mu & =\frac{E}{A p s} \tag{7}
\end{align*}
$$

The constant h is known as the diffusivity of material, which determines the rate at which the temperature changes in a bar.
Equation (6) is the standard Fourier equation for linear flow of heat . If we neglect the heat lost by radiation , (6) reduces to

$$
\begin{equation*}
\frac{d \theta}{d t}=\mathrm{h} \mathrm{~d}^{2} \theta / \mathrm{dx} \mathrm{x}^{2} \tag{8}
\end{equation*}
$$

Steady state

The temperature remains constant in slice element , this state is named as steady state. Hence

$$
\frac{d \theta}{d t}=0
$$

and (4) reduces to

$$
\begin{equation*}
\mathrm{d}^{2} \theta / \mathrm{d} \mathrm{x}^{2}=\frac{\mu}{h} \theta=\mathrm{m}^{2} \theta, \tag{9}
\end{equation*}
$$

where $\mathrm{m}^{2}=\frac{\mu}{h} \theta=\frac{E p}{K A}$
Here the radiation is included.

It is a second order differential equation and can be solved to give

$$
\theta=e^{ \pm m x}
$$

Hence complete solution of (9) is

$$
\begin{equation*}
\theta=\mathrm{A} e^{m x}+\mathrm{B} e^{-m x} \tag{10}
\end{equation*}
$$

Where A and B are constants whose values are determined from the boundary conditions.

Let us assume

$$
\begin{array}{lll}
\theta=\theta_{0} & \text { at } & x=0 \\
\theta=0 & \text { at } & x=\alpha
\end{array}
$$

Then
$\theta_{0}=A+B$
$0=A e^{\alpha}$
But e^{α} is not zero and hence $\mathrm{A}=0$.
Thus the finding solution will be
$\theta=\theta_{0} e^{-m x}$
When bar is covered , so that the radiation loss is neglected ,(9) becomes

$$
\begin{align*}
& d^{2} \theta / d x^{2}=0 \tag{12}\\
& \theta=A x+B \tag{13}
\end{align*}
$$

Where A and B are constants, which can be determined again from the boundary conditions.

If I be the length of the bar, then
$\theta=\theta_{0}$ at $x=0$
$\theta=\theta_{1}$ at $x=1$
From (13) we get
$B=\theta_{0}$
$\mathrm{A}=\theta_{0}-\theta_{1} / \mathrm{I}$
And hence
$\theta=\theta_{0}-\left(\theta_{0}-\theta_{1} / I\right) x$
Where θ is the temperature at any point x.

