## IONISATION POTENTIAL OR IONISATION ENERGY OR IONISATION ENTHALPY

Minimum energy required to remove most loosly held outer most shell e in ground state from an isolated gaseous atom is known as ionisation potential.

(Isolated -> Without any bonding with other atom)

Successive Ionisation Energy

(a) For an atom M, successive ionisation energies are as follows -

$$M + E_1 \longrightarrow M^+ + e^ E_1 = I^{st}$$
 Ionisation Potential  $M^+ + E_2 \longrightarrow M^{+2} + e^ E_2 = II^{nd}$  Ionisation Potential  $M^{+2} + E_3 \longrightarrow M^{+3} + e^ E_3 = III^{rd}$  Ionisation Potential

I<sup>st</sup> Ionisation Potential < III<sup>nd</sup> Ionisation Potential < III<sup>rd</sup> Ionisation Potential

- (b) Electron can not be removed from solid state of an atom, it has to convert in gaseous form, Energy required for conversion from solid state to gaseous state is called Sublimation energy.
- (c) Ionisation Potential is always an endothermic process ( $\Delta$  H = +ve)
- (d) It is measured in eV/atom (electron volt/atom) or Kcal/mole or KJ/mole
- Factors affecting ionisation potential
  - (a) Atomic size: Larger the atomic size, smaller is the Ionisation Potential It is due to that the size of atom increases the outermost electrons e farther away from the nucleus and nucleus loses the attraction on that electrons and hence can be easily removed.

Ionisation Potential 
$$\propto \frac{1}{\text{Atomic size}}$$

(b) Effective nuclear charge ( $Z_{\rm eff}$ ): Ionisation potential increases with the increase in nuclear charge between outermost electrons and nucleus.

Ionisation Potential ∝ Effective nuclear charge

| - |
|---|
|   |
|   |
| - |
|   |
|   |
|   |
|   |
|   |

| (c)  | Screening effect : I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Higher is the screen                               | sing all I                                              |                                                                                                                                    | _                 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (0)  | the nucleus and can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | be easily removed                                  | , which is leading to                                   | uter most electrons causes less attraction for the lower value of Ionisation Potential                                             | trom              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ionisation Poten                                   |                                                         |                                                                                                                                    |                   |
| (d)  | Penetration power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1              |                                                         |                                                                                                                                    |                   |
| (i)  | Order of attraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of subshells toward                                | ls nucleus (Penetratio                                  | on power) is -                                                                                                                     |                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p > d > f                                          |                                                         | •                                                                                                                                  |                   |
| (ii) | As subshell is mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e closer to nucleus                                | so more energy wi                                       | ll be required to remove e⁻ in comparisio                                                                                          | n to              |
|      | p,d & f. Ex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Be                                                 | В                                                       |                                                                                                                                    |                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1s^2$ , $2s^2$                                    | $1s^2$ , $2s^2 2p^1$                                    |                                                                                                                                    |                   |
|      | Ionisation Potentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al Be >                                            | В                                                       |                                                                                                                                    |                   |
|      | After loosing one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e <sup>-</sup> , B attains electron                | ic configuration of Be                                  | e, so $II^{nd}$ ionisation potential of B is more                                                                                  | than              |
|      | Be. II <sup>nd</sup> Ionisatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on Potential of                                    | B > Be                                                  |                                                                                                                                    |                   |
| (e)  | 100 100 to 100 t | filled and fully fi                                |                                                         |                                                                                                                                    |                   |
| (i)  | - Half-filled p <sup>3</sup> ,d <sup>5</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 or fully-filled $s^2$ , p                        | 6, d10, f14 are more                                    | stable than others so it requires more ene                                                                                         | rgy.              |
| Ex   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o :.                                               |                                                         | •                                                                                                                                  |                   |
|      | NAMES OF STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                  |                                                         | on Potential order is O < N<br>(stability) is higher than O.                                                                       |                   |
|      | I <sup>st</sup> ionisation pot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tential order Na < 1                               | Al < Mg                                                 |                                                                                                                                    |                   |
| (ii  | ) Because s-orbital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in Mg is completely                                | filled and its penetr                                   | ation power is also higher than p-orbital (                                                                                        | (Al).             |
|      | II <sup>nd</sup> ionisation p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | otential order M                                   | $Mg^{+}$ < $Al^{+}$ < $8,1)$ (2,8,2)                    | Na*<br>(2,8)                                                                                                                       |                   |
| P    | Periodic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of ionisation                                      | energy                                                  | 4 - x - Y                                                                                                                          |                   |
| (a   | along the period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d because in moving                                | left to right in a pe                                   | ents: Ionisation energies generally incre<br>riod the effective nuclear charge per oute<br>antum number remain same.               |                   |
| (    | in moving from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | top to bottom beca<br>other hand the effe          | use the size increase                                   | nts: The ionisation energy generally decress due to the increase of the principal qua<br>Zeff for the outermost electron remains a | antum             |
| 1    | Exception                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                                                         | •                                                                                                                                  |                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ential of Al < Ionisa<br>7 kj mol <sup>-1</sup>    | ntion Potential of G<br>579 kj mol <sup>-1</sup>        | a (While Ionisation Potential decreases<br>the group it is due to Transition contra                                                |                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntial of I-TF>Ionisation<br>i mol <sup>-1</sup> 5d | n Potential of Zr (W<br>674 kj mol <sup>-1</sup> 4d) ti | hile Ionisation Potential should decreases<br>he group. It is due to lanthanide contractio                                         | down<br>on)       |
|      | <ul><li>(c) In a period ator<br/>potential increa</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nic size decreases an<br>ses. But N, Be, P, M      | d zeff increases so re<br>Ag, show high ionisa          | emoval of electron becomes difficult and ion<br>tion energy than corresponding of next ele                                         | isation<br>ement. |
|      | Li Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B C                                                | N O                                                     | F Ne                                                                                                                               |                   |
|      | atomic size de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | creases, zeff incre                                | eases, Ionisation Pe                                    | otential increases.                                                                                                                |                   |
|      | Order of ionisa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                         | < 0 < N < F < Ne                                                                                                                   |                   |

| Applications of | ionisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | potential    |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                 | The second secon | Le or cittle |

(a) Metalli c and non metallic character

Metallic → Ionisation Potential Low (Na, K, Rb etc.)

non metallic → Ionisation Potential High (F, Cl, Br etc.)

lonisation Potential 
$$\propto \frac{1}{\text{Metallic property}}$$

(b) Reducing character

Re ducing character 
$$\propto \frac{1}{\text{Ionisation Potential}}$$

- (i) IA group has minimum ionisation potential so they are strong reducing agents in gaseous state ( Li < Na < K < Rb < Cs)
- (ii) IA group In Aqueous state

reducing character Li > K  $\tilde{}$  Rb > Cs > Na

As the degree of hydration is more in Li due to high charge density.

- (iii) VIIA group has maximum ionisation potential so they are strong oxidising agents (F > Cl > Br > I)
- (c) Stability of oxidation states:
- (i) If the difference between two successive ionisation potential > 16eV then lower oxidation state is stable.

Ex. Na  $\longrightarrow$  Na<sup>+</sup> Is ionisation potential  $\left.\begin{array}{c} Na^+ \longrightarrow Na^{+2} & II^{nd} \ ionisation \ potential \end{array}\right\}$  42.7 eV

Difference of ionisation potential > 16 eV So Na<sup>+</sup> is more stable.

(ii) If the difference between two successive ionisation potential  $\leq 11$  then higher oxidation state is stable.

Difference of ionisation potential < 11 eV So  ${\rm Mg}^{-2}$  is more stable.

 $\left\{ egin{array}{ll} Al^+ & \text{is stable only in gaseous state} \\ & Al^{+3} & \text{is stable in liquid and solid state.} \end{array} \right.$ 

Ionization energy in KJ mol-1

| Group<br>Period | 1    | 2   |     |         |         |     |        |           |             | <del>'</del> |     |      | 13  | 14   | 15   | 16   | 17   | 18   |
|-----------------|------|-----|-----|---------|---------|-----|--------|-----------|-------------|--------------|-----|------|-----|------|------|------|------|------|
| 1               | Н    |     |     |         |         |     | ****** |           |             |              |     | ·    | -   |      |      |      |      |      |
|                 | 1311 |     |     |         |         |     |        |           |             |              |     |      |     |      |      |      | Н    | He   |
|                 |      |     |     |         |         |     |        |           |             |              |     |      |     |      |      |      | 1311 | 2372 |
| 2               | Li   | Be  |     |         |         |     |        |           |             |              |     |      | В   | C    | N    | O    | F    | Ne   |
|                 | 520  | 899 |     |         | ♦       |     |        |           | •           | 0.00         |     |      | 801 | 1086 | 1403 | 1314 | 1681 | 2080 |
| 3               | Na   | Mg  |     | 102,000 |         |     |        |           |             |              | -   |      | Al  | Si   | P    | S    | CI   | · Ar |
|                 | 496  | 737 | 3   | 4       | 5       | 6   | • Gi   | roup<br>8 | 9           | 10           | 11  | 12   | 577 | 786  | 1012 | 999  | 1255 | 1521 |
|                 |      |     | , ' |         | • • • • |     |        |           | <del></del> |              | 11  | 1-   | 311 | 780  | 1012 |      |      |      |
| 4               | K    | Ca  | Sc  | Ti      | V       | Cr  | Mn     | Fe        | Co          | Ni           | Cu  | Zn   | Ga  | Ge   | As   | Se   | Br   | Kr   |
|                 | 419  | 590 | 631 | 656     | 650     | 652 | 717    | 762       | 758         | 736          | 745 | 906  | 579 | 760  | 947  | 941  | 1142 | 1351 |
| 5               | Rb   | Sr  | Y   | Zr      | Nb      | Мо  | Тċ     | Ru        | Rh          | Pd           | Ag  | Cd   | In  | Sn   | Sb   | Te   | I    | Xe   |
|                 | 403  | 549 | 616 | 674     | 664     | 685 | 703    | 711       | 720         | 804          | 731 | 876  | 558 | 708_ | 834  | 869  | 1191 | 1170 |
| 6               | Cs   | Ba  | La  | Hf      | Та      | W   | Re     | Os        | Îr          | Pt           | Au  | Hg   | TI  | Pb   | Bi   | Po   | At   | Rn   |
|                 | 376  | 503 | 541 | 760     | 760     | 770 | 759    | 840       | 900         | 870          | 889 | 1007 | 589 | 715  | 703  | 813  | 912  | 1037 |
| 7               | Fr   | Ra  | Ac  |         |         |     |        |           |             |              |     |      |     |      |      |      |      |      |

