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Oxy-Cope rearrangement
In organic chemistry, the oxy-Cope rearrangement is a chemical
reaction. It involves reorganization of the skeleton of certain
unsaturated alcohols. It is a variation of the Cope rearrangement in
which 1,5-dien-3-ols are converted to unsaturated carbonyl
compounds by a mechanism typical for such a [3,3]-sigmatropic
rearrangement.[1][2]

The reaction is highly general: a wide variety of precursors undergo
the reorganization predictably and with ease, rendering it a highly
useful synthetic tool.[3] Further, production of the required starting
material is often straightforward. The modification was first proposed
in 1964 by Berson and Jones, who coined the term. The driving force
is the formation of a carbonyl via spontaneous keto-enol
tautomerization.[4]

Base accelerates the reaction by 1010-1017, the anionic oxy-Cope rearrangement.[5]

The formation of an enolate renders the reaction irreversible in most cases.[3][4][6]
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Sigmatropic rearrangements are useful organic synthesis.[6] In an effort to demonstrate the versatility of the
Cope rearrangement by demonstrating its tolerance of an alcohol situated at C-3 of a 1,5-diene, Berson and
Jones heated a bicyclic diene alcohol in the gas phase to give cis-∆5,6-octalone in fair yield.[1]

The modification is immensely appealing as a result of the two new disparately placed functional groups that
lend themselves well to a variety of previously unavailable synthetic manipulations.

The next development occurred in 1975, when Evans and Golob reported the tremendous rate enhancements
by base. Their use of potassium hydride in the cation's corresponding crown ether became the default
approach for most applications. Indeed, in some cases, anionic assistance is intentionally forgone to
accommodate for the production of overly sensitive enolate product. For example, in the following reaction
only tar was obtained, a result that the authors attributed to the product's ostensible intolerance to base.[7] The
original oxy-Cope modification thus to this day occupies a relevant niche in synthetic chemistry.

Both the neutral and anionic variants of the oxy-Cope rearrangement may occur via either concerted or
stepwise radical pathways, although the former mode is generally favored.[8][9] The preferred intermediate is
characterized by a chair-like conformation.[10] Chirality transfer is effected by a highly ordered transition
state.[4][10] The positioning of the double bonds in the most readily accessible transition state determines the
stereochemical course of the reaction.[3] A boat transition state is disfavored, but typically rearrangements
occur via this path to an appreciable extent as well, resulting in the production of diastereomeric mixtures.

Steric effects can be significant.[11]
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Rearrangements for which a chair transition state is geometrically impossible nonetheless occur. In fact, enolate
formation provides enough of a driving force to overcome the energetic barrier associated with both
dearomatization and the boat conformer.[12]

The concerted, synchronous pathways presented above generally predominate; it was calculated for anionic
oxy-Cope processes that a divide of 17-34 kcal/mol favors heterolysis over homolysis.[13] Several factors may
bridge this energetic gap.[10]

The large degree of strain and the presence of a methyl group's bulk favored the (Z)- instead of the expected
(E)-cyclooctenone isomer, suggesting that the intermediate is not formed synchronously. Only with
fragmentation and subsequent isomerization steps could the observed product be rationalized.[10]

A study on the anionic oxy-Cope rearrangement carried out entirely in the gaseous phase reported that the rate
enhancement stems not from solvent interactions, but from those within the structure itself.[14]

In general, decreasing the stability of the oxy-Cope or anionic oxy-Cope substrate relative to that of the
product results in increased rate of reaction by the principle of ground state destabilization. This desirable
outcome is readily achieved in a variety of ways. Ionic interactions between metal and alkoxide are important:
dissociative character causes rate acceleration.[5] Use of 15-crown-5 in conjunction with sodium hydride
afforded a 1.27-fold rate enhancement over the course of a bicyclic diene alkoxide's sigmatropic conversion to
enolate product, while the same reaction with HMPT in 15-crown-5's place did not appreciably affect the rate.
The use of potassium hydride in conjunction with 18-crown-6 to achieve the same end afforded a 180-fold
maximum rate acceleration. From the above results it was concluded that rate increases as counterions more
poorly approximate point charges—and with the addition of counterion-sequestering species.

The inclusion of more polar solvents and catalytic quantities of phase transfer salts has also been demonstrated
to exert the same rate-enhancing effect.[15]

Finally, the relief of ring strain over the course of a rearrangement will drive a reaction more forcibly to
completion, thereby increasing its rate.
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Because there exist multiple classes of natural products containing eight-membered rings, the syntheses of
which having proved difficult, the anionic oxy-Cope rearrangement has been highlighted as a suitable
alternative pathway. Its application here offers great stereochemical control, and its use is far more general than
the relatively unsuccessful routes that had been employed before its development.[16]

In spite of possible geometrical constraints, the required unsaturated substrates may contain triple bonds in
place of either of the double bonds. Such an alkynol was effectively manipulated in the elegant synthesis of
both poitediol and dactylol.[6] These interesting sigmatropic rearrangements can occur either with anionic
assistance or under thermal conditions.[17]

Of particular interest is the application of the oxy-Cope to situations in which the immediate product reacts
further in a predictable manner to furnish a desired final product. This goal was achieved in the synthesis of the
cis-hydroazulenone below, in which the oxy-Cope intermediate was characterized by a stereoelectronic
configuration amenable to remote SN displacement.[18]

Potassium hydride, a frequently utilized reagent for the anionic oxy-Cope rearrangement, is occasionally
contaminated with trace impurities that have been suggested to destroy the dienolate intermediate, resulting in
putative polymerization. Macdonald et al., who documented the occurrence, prescribed pre-treatment with
iodine to eliminate any potassium superoxide that may persist within a purchased batch of the material. This
simple preparatory step, as they describe in their paper, effects dramatic improvement in both yield and
reproducibility of results.[19]

Important side reactions include heterolytic cleavage, in which the homoallylic alcohol decomposes into a
carbonyl and an allylic system.[20]

Suppression of this phenomenon is readily achievable by decreasing the ionic nature of the metal-alkoxide
bond. Specifically, the use of more electronegative alkali metals or solvents less amenable to cation solvation
generates the desired effect.[21] In keeping with the above discussion, the rate of reaction may be diminished
but should not approach an unsatisfactory level.
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