Paper 7, TDC Part-3

Chapter- 3, Number Systems and Codes

Electronics

Lecture - 2
By:
Mayank Mausam
Assistant Professor (Guest Faculty)
Department of Electronics
L.S. College, BRA Bihar University,

Muzaffarpur, Bihar

Number Systems and Codes

- Weighting Structure of Binary Numbers:-

Binary number is a weighted number. The weight depends on the number of bits present in binary number and increase from right to left by a power of 2 for each bit.
The LSB of binary whole number has a weight of $2^{0}=1$ while the weight of MSB depends on the number of bits of the binary number.
Fractional numbers are written by placing bits to the right of the binary point (radix). The left most bit is the MSB and has a weight of $2^{-1}=0.5$, the weight decrease from left to right by a negative power of 2 for each bit.

Number Systems and Codes

The weight structure of binary number is

$$
2^{n-1} \ldots \ldots . .2^{3} 2^{2} 2^{1} 2^{0} .2^{-1} 2^{-2} 2^{-3} \ldots2^{-m} 2
$$

Where n and m are positive integers.

- Conversion of number systems

In a digital system, any user provide input (data) and receives the output data in decimal number system while the digital system understand the binary data, so it is required to convert binary number to decimal and vice versa.

Number Systems and Codes

- Binary-to-Decimal Conversion

Any binary number can be converted to its decimal equivalent using the weights assigned to each bit position. The equivalent decimal value of any binary number is obtained by adding the weights of all bits that are 1 and discarding the weights of the bits those are zero.

Refer to solved examples in next slide.

Number Systems and Codes
Example (1) Corves the bollowing binary decimal numbers.
(iii) 1110101 (ii) 0.01101

Sin decimal equivalent of Binary Number

$$
\begin{aligned}
\left(110^{4} 12^{2}\right)^{2} & =1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+ \\
& 1 \times 2^{2}+0 \times 2+1 \times 2^{2} \\
= & 1 \times 64+1 \times 32+1 \times 16+0 \times 8+1 \times 4 \\
= & 64+0 \times 2+1 \times 1 \\
= & (125)_{10}+16+8+4+1
\end{aligned}
$$

$$
\text { S. }(1110101)_{2}=(125)_{10}
$$

Note: To differentiate betweo number: represented in different number

Number Systems and Codes
number system may bo specified along with the number or a smalt number subscript at the end added signifying the number system. (100), represents a binary number and is anat ane hundred. Similarly $(100) 8$ \& 100$)_{16}$ represent a octal number and a hexadecimal member rexpectively.
onion (ii) $(0.01101)_{2}=(?)_{10}$
Fractions Binary Number:- $0=0=2^{-1} 2^{-\frac{1}{1}} 2^{-3} 2^{-4} 2^{-5}$
So,

$$
\begin{aligned}
& \left.\begin{array}{rlllll}
(0.0 & 2^{-1} & 2^{-2} & 2^{-3} & 2^{-4} & 2^{-5} \\
0 & 1 & 1
\end{array}\right)_{2}=0 \times 2^{-1}+\frac{1}{4} \times 2^{-2}+1 \times 2^{-3} \times 2^{-3} \\
& =0 \times 0.5+1 \times 0.25+1 \times 0.125 \\
& +0 \times 0.0625+1 \times 0.03125 \\
& \begin{array}{l}
=0+0.25+0.125+0+0.03125 \\
=(0-40625)_{10}
\end{array}
\end{aligned}
$$

So $(0.01101)_{2}=(0.40625)_{10}$

Number Systems and Codes
ii: $)(1101 \cdot 1001)_{2}$
Binary Number: $1101-1001$
Weight $=2^{3} 2^{2} 2^{1} 2^{0} \cdot 2^{-1} 2^{-2} 2^{-3} 2^{-4}$
$S \rightarrow$

$$
\begin{aligned}
& \left(\begin{array}{lllllll}
2^{3} & 2^{2} & 2^{1} & 2^{0} & 2^{-1} & 2^{-2} & 2^{-3} \\
2^{-4} \\
0 & 1^{1}
\end{array}\right)_{2}=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{\circ} \\
& +1 \times 2^{0}+1 \times 2^{-1}+0 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4} \\
& =1 \times 8+1 \times 4+0 \times 2+1 \times 1+1 \times 0.5+ \\
& 0 \times 0.25+0 \times 0.125+ \pm \times 0.0625 \\
& =8+4+0+1+0.5+0+0+0.0625 \\
& =(13-5625)
\end{aligned}
$$

$\operatorname{sen}(1101 \cdots 1001)_{2}=(13.5625) 10$
Example (2) (11001.1101) $2=(?) 10$
Solutiva $(11001-11001)_{2}=1 \times 2^{4}+1 \times 9^{3}+1 \times 2^{0}+$

$$
\begin{aligned}
& 01.11011)_{2}=1 \times 2 \times 2+1 \times 2^{-1}+1 \times 2^{-2}+1 \times 2+1 \times 2^{-4} \\
& \left.=16+8+18+0.5+0.25+0.0 \frac{1}{5}+125\right)_{10} \\
& =(25-8125
\end{aligned}
$$

Number Systems and Codes
Decimal - to - Binary Gnrversiom \rightarrow Method $1 \Rightarrow$ (ontinuous (Ropeateal) division by 2 Mo shod.
For integers, the conversion is obtained by cantitinous division by 2 and keeping the $t r a c k$ of remainal ers. The remainders generated by each division form the binary number. The Inst remain dor to be prodifeed is the LSB and tho last remainder to be produced is the MSB in the binary number. It can be illustrated by the following example.
wamble 3) Convert decimal number 39 to it's equival or quotient Sikang number.
ooluhim

Number Systems and Codes
:xample (2) (63) $10=(?)_{2}$
folution:- Quotient, Remainder

Methods $2: \rightarrow$ Sum - of = weights Me thad
In this method the conversion is obtaineal by doterming Ale the set of binary weights Whose sum is equal to the decimal number. Example (3) $(39) 10=(?)=$
fo we start with the weight that in just less then the given decimal number. $39=32+4+2+1$

Number Systems and Codes

$$
\begin{aligned}
& =2^{5}+2^{2}+2^{1}+2^{0} \\
& =1 \times 2^{5}+0 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{\circ}+1 \times 2
\end{aligned}
$$

So $(3 T)_{10}=(1001111)_{2}$
sample $(6)(96)_{10}=(?) 2$
Subion $(96)_{10}=64+32$

$$
\begin{aligned}
&=1 \times 2^{6}+1 \times 2^{5}+0 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2} \\
&+0 \times 2^{1}+0 \times 2^{0}
\end{aligned}
$$

$$
(96)_{10}=(110000)_{2}
$$

Conrerhing Frachional Decimal to Binary The frachionial pecimal can be converted to it's equiraleat binany number by continuoum multiplication by 2 and kepping track of the intergers generated. Example

$$
\begin{aligned}
& 0.65625 \times 2=1.31250 \rightarrow 1^{2} \longrightarrow M 3 B \\
& \text { (8) } \\
& 0.31250 \times 2=0.62500 \\
& \longrightarrow 0
\end{aligned}
$$

Number Systems and Codes
 binary number pto 4 binary bill after binary point.
Solution

$$
\begin{aligned}
& 0.7341 \times 2=1.4682 \longrightarrow 1 \quad \text { TMSB } \\
& 0.4682 \times 2=0.9364 \\
& 0.9364 \times 2=1.8728 \\
& 0.8728 \times 2=\overline{1.7456} \longrightarrow
\end{aligned}
$$

So, upto 4 binary bit after binary point.

$$
(0-7341)_{10}=\left(0-10 \frac{1}{2} \ldots .\right)
$$

Number Systems and Codes
Example 9:- $(137-65)_{10}=(3)_{2}$ updo 4 binary bit after binary point.
Solution there we frit find binary equivalent of integer part, ie 132

$$
(137)_{10}=(10000101)_{2}
$$

Now for integer past we have.

$$
\begin{aligned}
& 0.65 \times 2=1.30 \\
& 0.30 \times 2=0.60 \\
& 0.6 \times 2=1.2 \longrightarrow 1^{1} \\
& 0-2 \times 2=0.4 \\
& \rightarrow 0^{J} \rightarrow 23 B
\end{aligned}
$$

Number Systems and Codes

So the binary equivalent of

$$
(137.65)_{10}=(10000101.1010 \ldots . . .)_{2}
$$

Thank You

