Junction Diode

Lecture - 8

(08/06/2021)

B.Sc (Electronics) TDC PART - I Paper – 1 (Group – B) Unit – 5 by:

Dr. Niraj Kumar

Assistant Professor (Guest Faculty)

Department of Electronics

L. S. College, BRA Bihar University, Muzaffarpur.

Charge Neutrality

The semiconductor crystal is Electrical Neutral under Thermal Equilibrium conditions. The Electrons are distributed among the different Energy States, producing both Negative and Positive charge but the net charge density is zero. This Charge Neutrality condition is used for determination of the thermal-equilibrium Electron and Hole concentrations as a function of impurity doping concentration.

Compensated Semiconductors

- A Semiconductor containing both Donor and Acceptor impurity atoms in the same region is called a Compensated Semiconductor.
- ⇒ It is formed by diffusing Donor Impurity into a P type material $(N_A > N_D)$ or by diffusing Acceptor Impurity into an N – type material $(N_D > N_A)$. If $N_D = N_A$, we have a completely compensated conductor. Compensated conductors are produced quite naturally during device fabrication.

Fig. (1) Shown Energy Band Diagram of a Compensated Semiconductor showing Ionized and Unionized Donors and Acceptors.

- Energy band diagram of a compensated semiconductor is shown above in Figure (1).
 The above Figure (1) depicts how the Electrons and Holes can be distributed among the various states.
- ⇒ The charge density of Negative and Positive charges can be equated for Charge Neutrality condition and thus we have,

Electrons in the Valence and Conduction Bands respectively.

- ⇒ The parameter p_A is the Concentration of Holes in the Acceptor Energy States, so, $N_A^- = N_A - p_A$ is the concentration of Negatively Charged Acceptor States.
- $\Rightarrow \text{ Similarly, } n_D \text{ is the Concentration of Electrons in the Donor Energy States, so,} \\ N_D^+ = N_D n_D \text{ is the concentration of Positively Charged Donor States.}$
- \Rightarrow For complete ionization n_D and p_A are both zero so that above Equation (57) becomes,

 \Rightarrow If p_0 is expressed as $\frac{n_i^2}{n_0}$, then,

- ⇒ The **Positive sign** in the **quadratic equation** is required to be used, since, in the limit of an Intrinsic Semiconductor when $N_A = N_D = 0$, the Electron Concentration must be a Positive quantity, or $n_o = n_i$.
- ⇒ The above Equation (61) is used to determine the Electron Concentration in an N <u>Type Semiconductor</u> or when $N_D > N_A$. This Equation is also valid for $N_A = 0$.

⇒ In the next Lecture - 9, we will discuss the detailed of the Space Charge at a P-N Junction.

to be continued