Junction Diode

Lecture - 6

(05/06/2021)

B.Sc (Electronics)
TDC PART - I
Paper - 1 (Group - B)
Unit - 5
by:

Dr. Niraj Kumar

Assistant Professor (Guest Faculty)

Department of Electronics

L. S. College, BRA Bihar University, Muzaffarpur.

Barrier Width and Junction Capacitance of Contact Potential Across the P-N Junction (PART – 2)

(B) Barrier Width

⇒ The **Space Charge Region** has a width equal to,

$$X = X_1 + X_2$$
(19)

 \Rightarrow Now putting the value of X_1 and X_2 of Equation (17) and Equation (18) from

Lecture - 5 to the above Equation (19), then we get,

$$X = \left[\frac{2 \epsilon V_B}{e N_a \left(1 + \frac{N_a}{N_d} \right)} \right]^{\frac{1}{2}} + \left[\frac{2 \epsilon V_B}{e N_d \left(1 + \frac{N_d}{N_a} \right)} \right]^{\frac{1}{2}} \qquad (20)$$

$$X = \left(\frac{2 \epsilon V_B}{e}\right)^{\frac{1}{2}} \left[\left\{ \frac{N_d/N_a}{N_a + N_d} \right\}^{\frac{1}{2}} + \left\{ \frac{N_a/N_d}{N_a + N_d} \right\}^{\frac{1}{2}} \right] \qquad (21)$$

$$\therefore X = \left[\frac{2 \epsilon V_B}{e \left(N_a + N_d\right)}\right]^{\frac{1}{2}} \left[\left(\frac{N_d}{N_a}\right)^{\frac{1}{2}} + \left(\frac{N_a}{N_d}\right)^{\frac{1}{2}}\right] \qquad (22)$$

- **Example:** Consider a typical example with,
 - + $N_d \approx N_a \approx 10^{21} \text{ per } m^3$
 - + $V_B = 0.5$ volt
 - + $\epsilon_0 = 8.85 \times 10^{-12}$ farad / meter,
 - $+ \epsilon_r = 16$ for Ge (Germanium)
- \Rightarrow So, we know that, $\epsilon = \epsilon_0 \cdot \epsilon_r$
 - + $\epsilon = 8.85 \times 10^{-12} \times 16 \text{ farad/meter (for Ge)}$ and
 - + $e = 1.6 \times 10^{-19}$ coulomb
- Now putting the above values of **different parameters** in above **Equation (22)**, then we find that the **Width (Thickness) of Junction Barrier** is,

$$X = \left[\frac{2 \epsilon V_B}{e (N_a + N_d)} \right]^{\frac{1}{2}} \left[\left(\frac{N_d}{N_a} \right)^{\frac{1}{2}} + \left(\frac{N_a}{N_d} \right)^{\frac{1}{2}} \right]$$
 (22)

$$X = \left[\frac{2 \times 1.6 \times 10^{-19} \times 0.5}{1.6 \times 10^{-19} \times (10^{21} + 10^{21})} \right]^{\frac{1}{2}} \quad \left[\left(\frac{10^{21}}{10^{21}} \right)^{\frac{1}{2}} + \left(\frac{10^{21}}{10^{21}} \right)^{\frac{1}{2}} \right] \dots (23)$$

⇒ Then we find that Width (Thickness) of Junction Barrier is,

$$\therefore X = 10^{-6} \text{ meter}$$
 (24)

 \Rightarrow Now, if $N_d \gg N_a$, then we can neglect N_a in the Sum $((N_a + N_d))$ and also the term $\frac{N_a}{N_d}$ can be approximated to zero. The Equation (22) gives,

$$X = \left(\frac{2 \epsilon V_B}{e N_d}\right)^{\frac{1}{2}} \left(\frac{N_d}{N_a}\right)^{\frac{1}{2}} \qquad (25)$$

$$X = \left(\frac{2 \epsilon V_B}{e N_a}\right)^{\frac{1}{2}} \tag{26}$$

- ❖ V.V.I :- Which shows that Width of Space Charge Region Decreases as the Impurity Concentration Increases.
- Further, we find the ratio of **Potential Distribution in Space Charge Region on P** side V_1 and **Potential Distribution in Space Charge Region on N** side V_2 ,

$$\frac{V_1}{V_2} = \left(\frac{X_1}{X_2}\right)^2 \left(\frac{N_a}{N_d}\right) \qquad (27)$$

 \Rightarrow And we find the ratio of Width of Space Charge Region in the P – side X_1 and Width of Space Charge Region in the N – side X_2 ,

$$\frac{X_1}{X_2} = \frac{N_d}{N_a} \tag{28}$$

⇒ Now from above two relations given in **Equation** (27) and **Equation** (28), we find that,

$$\frac{V_1}{V_2} = \frac{N_d}{N_g}$$
(29)

* V.V.I :- We note here from above Equation (29) that, when $N_d \gg N_a$, $V_1 \gg V_2$ which implies that the Potential Charge is confined to the region which has impurity in small amounts (light doped).

(C) Junction Capacitance

- \Rightarrow The **Total Positive Charge in the N type region** is equal to
 - $= e N_d X_2 \text{ coulumb/meter}^2$ and
- ⇒ The Total Negative Charge in the P type region is equal to
 - $= -e N_a X_1 \text{ coulumb/meter}^2$
- ⇒ But from **Equation** (15) from **Lecture** 5,

On putting for X_1 , we find that $-e N_a X_1$ is equal to $+e N_d X_2$ which implies that **Positive and Negative charge per meter**² have equal magnitude. The Capacitance C per meter² of the Barrier/Depletion layer is then given by,

Now putting the value of X_2 of Equation (18) from Lecture - 5 to the above Equation (30), then we get,

$$C = \frac{d}{dV_B} \left[e N_d \left\{ \frac{2 \epsilon V_B}{e N_d \left(1 + \frac{N_d}{N_a} \right)} \right\}^{\frac{1}{2}} \right] \qquad (31)$$

$$\therefore C = \epsilon \left[\frac{e N_a N_d}{2 \epsilon V_B (N_a + N_d)} \right]^{\frac{1}{2}} \qquad (32)$$

⇒ Now using Equation (22), then we get Junction Capacitance as,

$$X = \left[\frac{2 \epsilon V_B}{e (N_a + N_d)} \right]^{\frac{1}{2}} \left[\left(\frac{N_d}{N_a} \right)^{\frac{1}{2}} + \left(\frac{N_a}{N_d} \right)^{\frac{1}{2}} \right]$$
 (22)

$$\therefore C = \frac{\epsilon}{X} \qquad (33)$$

- **Example:** Consider a typical example with,
 - + $\epsilon = 8.85 \times 10^{-12} \times 16$ farad/meter (for Ge) and
 - + Thickness of Junction Barrier is, $X = 10^{-6}$ meter

$$\therefore C = \frac{\epsilon}{X} = \frac{8.85 \times 10^{-12} \times 16}{10^{-6}} = 144 \,\mu\text{F/meter}^2$$

⇒ In the next **Lecture - 7**, we will discuss the detailed of the **Barrier Potential in Terms of the Intrinsic Density of either Carrier (PART – 3)**.

to be continued
