Junction Diode

Lecture - 5

(04/06/2021)

B.Sc (Electronics)

TDC PART - I
Paper - 1 (Group - B)
Unit - 5
by:

Dr. Niraj Kumar

Assistant Professor (Guest Faculty)

Department of Electronics

L. S. College, BRA Bihar University, Muzaffarpur.

> Barrier Voltage of Contact Potential Across the P-N Junction (PART - 1)

\Rightarrow As mentioned in previous Lecture - 3 that due to the Positively charged region on N - type side and Negatively charged region on P - type side, there exists a space charge near the P-N Junction. The variation of potential arising out of space charge is shown below in Figure (1) and Figure (2).

Fig. (1) Shown an Abrupt P-N Junction, i.e., which changes Abruptly from \mathbf{p} - region to \mathbf{n} - region at $\mathbf{X}=\mathbf{0}$.

Fig. (1) Shown Space Charge Region around the P-N Junction.
\Rightarrow It is shown that Barrier Potential is $V_{B}=\left|V_{1}\right|+\left|V_{2}\right|$ and the Total Width of Space Charge Region $X=X_{1}+X_{2}$, where, X_{1} and X_{2} are the Width of Space Charge Region in the P - sides and N - sides respectively.
\Rightarrow To find the Distribution Barrier Potential in the Space Charge Region, we proceed with Poisson's Equation,
$\frac{d^{2} V}{d x^{2}}=-\frac{\rho}{\epsilon}$
in one dimension.
\Rightarrow Here $\boldsymbol{\rho}$ is the Volume Density of charge and $\boldsymbol{\epsilon}$ is the Permittivity of the medium.
\Rightarrow The Charge Density in P - side of the Space Charge Region is given by $\rho=-e N_{a}$ where, N_{a} is the Density of Negatively charged (ionised) accepter atoms.
\Rightarrow Now Putting the value of $\rho=-N_{a}$ in above Equation (1), then the Potential Variation in P - side region is given by,
$\frac{d^{2} V}{d x^{2}}=\frac{e N_{a}}{\epsilon}$
\Rightarrow Now Integrating the above Equation (2), then we get,

$$
\begin{equation*}
\frac{d V}{d x}=\frac{e N_{a} x}{\epsilon}+C_{1} \tag{3}
\end{equation*}
$$

\Rightarrow where, C_{1} is a constant of Integration.
\Rightarrow Applying the Boundary Condition: at $x=-X_{1}, \frac{d V}{d x}=0$, to above Equation (3), we arrive at,
$C_{1}=\frac{e N_{a} X_{1}}{\epsilon}$
\Rightarrow Now putting the value of C_{1} into above Equation (3), then we get,

$$
\begin{equation*}
\frac{d V}{d x}=\frac{e N_{a} x}{\epsilon}+\frac{e N_{a} X_{1}}{\epsilon} \tag{5}
\end{equation*}
$$

\Rightarrow Now Integrating the above Equation (5), we find that,

$$
\begin{equation*}
V=\frac{e N_{a} x^{2}}{2 \epsilon}+\frac{e N_{a} X_{1} x}{\epsilon}+C_{2} \tag{6}
\end{equation*}
$$

\Rightarrow where C_{2} is another constant of Integration.
\Rightarrow Now applying the Boundary Condition: at $x=0, V=0$, to above Equation (6), we find that $\boldsymbol{C}_{2}=\mathbf{0}$, so that putting the value of \boldsymbol{C}_{2} into above Equation (6), then we get,
$V=\frac{e N_{a} x^{2}}{2 \epsilon}+\frac{e N_{a} X_{1} x}{\epsilon}+0$
$V=\frac{e N_{a} x^{2}}{2 \epsilon}+\frac{e N_{a} X_{1} x}{\epsilon}$
\Rightarrow At $x=-X_{1}, \quad V=V_{1}$, giving,

$$
\begin{equation*}
V_{1}=\frac{e N_{a} X_{1}^{2}}{2 \epsilon} . \tag{9}
\end{equation*}
$$

\Rightarrow Similarly, for the Potential Distribution in Space Charge Region on N - side, we apply the equation,
$\frac{d^{2} V}{d x^{2}}=\frac{e N_{d}}{\epsilon}$
\Rightarrow where N_{d} is the Density of the Positively charged (ionised) Donor atoms.
\Rightarrow The solution of above Equation (10), on applying the Boundary Condition is at

$$
\begin{align*}
& x=0, V=0 \text { and } x=X_{2}, \frac{d V}{d x}=0 \text {, then we get, } \\
& V=\frac{e N_{d} x^{2}}{2 \epsilon}+\frac{e N_{d} X_{2} x}{\epsilon} \tag{11}
\end{align*}
$$

\Rightarrow But at $\boldsymbol{x}=\boldsymbol{X}_{2}, \boldsymbol{V}=\boldsymbol{V}_{2}$, so that,

$$
\begin{equation*}
V_{2}=\frac{e N_{d} X_{2}^{2}}{2 \epsilon} \tag{12}
\end{equation*}
$$

(A) Barrier Potential

\Rightarrow Therefore, Height of Potential Barrier across the P-N Junction is given by,

$$
\begin{equation*}
V_{B}=\left|V_{1}\right|+\left|V_{2}\right| \tag{12a}
\end{equation*}
$$

\Rightarrow Now Putting the value of V_{1} and V_{2} in above Equation (12 a), then the Potential Variation in P - side region is given by,

$$
\begin{align*}
& V_{B}=\frac{e N_{a} X_{1}^{2}}{2 \epsilon}+\frac{e N_{d} X_{2}^{2}}{2 \epsilon} \tag{13}\\
& V_{B}=\frac{e\left(N_{a} X_{1}^{2}+N_{d} X_{2}^{2}\right)}{2 \epsilon} \tag{14}
\end{align*}
$$

\Rightarrow Since the Crystal (P-N Junction) as a whole is electrically neutral, we get the charge Neutrality Condition,
$N_{a} X_{1}=N_{d} X_{2}$
\Rightarrow Putting for X_{2}, from above Equation (15) in Equation (14), then we get,

$$
\begin{equation*}
V_{B}=\frac{e N_{a}}{2 \epsilon} X_{1}^{2}\left(1+\frac{N_{a}}{N_{d}}\right) \tag{16}
\end{equation*}
$$

\Rightarrow By simplify the above Equation (16) we can obtained the expression of $\mathbf{X}_{\mathbf{1}}$

$$
\begin{equation*}
X_{1}=\left[\frac{2 \epsilon V_{B}}{e N_{a}\left(1+\frac{N_{a}}{N_{d}}\right)}\right]^{\frac{1}{2}} \tag{17}
\end{equation*}
$$

\Rightarrow Similarly, we can obtain the expression of $\mathbf{X}_{\mathbf{2}}$

\Rightarrow In the next Lecture - 6, we will discuss the detailed of the Barrier Width and Junction Capacitance of Contact Potential across the P-N Junction (PART - 2).

\qquad

