Paper 7, TDC Part-3

Chapter- 1, Fundamental Concept of Digital Electronics
Boolean Algebra Lecture 2

By:

Mayank Mausam
Assistant Professor (Guest Faculty)
Department of Electronics
L.S. College, BRA Bihar University,

Muzaffarpur, Bihar

Fundamental Concepts of Digital Electronics

11. Theorem No. 1.11) A + A.B $=A$

Proof of this theorem should be done by student himself.
12. Theorem No. 1.12) A. $(A+B)=A$

Proof of this theorem should be done by student himself.

Fundamental Concepts of Digital Electronics

13. Theorem No. 1.13) $A+\bar{A} \cdot B=(A+B)$

Proof, As per theorem number 10, we can extend
LHS,$A+A . B=(A+\bar{A})(A+B)$

$$
=1 .(A+B) \quad[\text { As per theorem no. 7, }
$$

$A+\bar{A}=1]$

$$
=(A+B)
$$

14. Theorem No. 1.14) $A(\bar{A}+B)=A B$
15. Theorem No. 1.15) $A B+\overline{A B}=A$
16. Theorem No. 1.16) $(A+B) \cdot(A+B)=A$

Fundamental Concepts of Digital Electronics
17.) Theorem N_{0}.1.17) $A B+\bar{A} C=(A+C)(\bar{A}+B)$ proof, We will start by taking R.S1.5

$$
\begin{aligned}
(A+C)(\bar{A}+B) & =A \bar{A}+\bar{A} C+A B+B C \\
& =\bar{A} C+A B+B C+B C+\bar{A}+\bar{A}=0] \\
& =\overline{A C}+A B+(A+\bar{A}) B C \quad[(A+\bar{A})=1] \\
& =A B+A B+A B C+\overline{A B C} \\
& =A B(1+C)+\overline{A C}(1+B) \\
& =A B+\bar{A} C \cdot 1 \text { As per theroem no. } \\
& =R \cdot H \cdot S . \quad \text { Hence proved }
\end{aligned}
$$

18.) Theorem No. 1.18) $(A+B)(\bar{A}+C)=A C+\bar{A} B$
19) Theorem N_{0} 1.19) $A B+\bar{A} C+B C=A B+\bar{A} C$

So REDM NOREE Pro No. 1-20) $(A+B)(\bar{A}+C)(B+C)=(A+B)(\bar{A}+C)$

Fundamental Concepts of Digital Electronics
De Morgan's Theorems:-
De Morgan's proposed i theorems, that are an important part of Boolean Algebra DeMorgan's first theorem states that; The complement of 2 or more ANDed variables is equivalent to the $O R$ of the complements of the individual variables.
or,
The complement of a product of variables is equal to the sum of the complements IT A serotho variables.

Fundamental Concepts of Digital Electronics
or,
The complement of a product of variables is equal to the sum of the complements af the variables.

$$
\text { flag. } \overline{A B}=\bar{A}+\bar{B}
$$

De Morgan's Ind the orem stater that;
The complement of 2 or more OPed variables
is equivalent to the $A N D$ of the complemented is equivalent to the AND of the complemented of the individenal variables.
Or,

Fundamental Concepts of Digital Electronics
The complement of a sum of variables is equal to the product of the complements of the variables.

$$
\overline{A+B}=\bar{A} \cdot \bar{B}
$$

Marly.

$$
\overline{A+B+C+\cdots+\bar{N}}=\bar{A} \cdot \bar{B} \cdot \bar{C} \ldots \bar{N}
$$

We hare applied DeMorgan's theorem during realization of OR gate using NAND gate or redization of AND gate using NOR gate.

Fundamental Concepts of Digital Electronics
So De Morgan's theorem is useful in many Boolean algebra.
Truth Table to Prove De Morgan's Theorem

A	B	\bar{A}	\bar{B}	$A+B$	$\overline{A+B}$	$\bar{A} \cdot \bar{B}$
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

So from truth table we can see that values in column $\overline{A+B}$ equal to values in column $\bar{A} \cdot \bar{B}$. redmínote s pro $\overline{A+B}=\bar{A} \cdot \bar{B}$

Fundamental Concepts of Digital Electronics
A logic problem can be specified in terms of a set af statements. Thess set of statements can be represented in terms of an equation called the logic equation or in terms of truth table A digital circuit t uses logic gates for the implementation can realise a logic equation.
Using the different theorem logic equation can be minimise (simplify). The simplified logic equation need lose number of gates andlor less number of inputs for giber gates.
MR RA
Mater

Fundamental Concepts of Digital Electronics
Example) Simplify and realise (design) a digital circuit for the logic equation.

$$
Y=\bar{A} \cdot B+A \cdot \bar{B}+\bar{A} \cdot \bar{B}
$$

Sole. Simplifying

$$
\begin{aligned}
& Y=\bar{A} B+A \bar{B}+\bar{A} \bar{B} \\
&=\bar{A} B+\bar{B}(A+\bar{A}) \\
&=\bar{A} B+\bar{B} \cdot 1 \\
&=\bar{A} B+\bar{B} \\
&=\bar{A}+\bar{B} \quad \text { As per theorem no. } \\
& \text { 13]. }
\end{aligned}
$$

Fundamental Concepts of Digital Electronics
Design using basic gates

Design using NAND gate only.

$$
\begin{aligned}
Y & =\bar{A}+\bar{B} \\
& =\overline{\overline{\bar{A}}+\bar{B}}=\overline{\bar{A}} \cdot \overline{\bar{B}} \quad \text { [As per DeMorgai } \\
& =\overline{A \cdot B}
\end{aligned}
$$

Fundamental Concepts of Digital Electronics
Integrated Circuit (IC) Gates
All the logic function (dlarates) discussed axe commercially available in'IC'form,
For Example, IC - 7400 is a quadruple 2- I/P NAND gate available in 14 -pi on $D I P$. This mean IC -7400 contain 4-2-1/p NAND gate.
Figure below show 7400 IC Block Diagram of 7400 IC

figure 1.1) Block Diagram of 7440 IC

Fundamental Concepts of Digital Electronics

List of other ICs that contains gates like NOT, OR, AND, XOR etc is provided in the next slide. Different Cs with different number of gates, types of gate or with different numbers of input are available. As per the requirement we use that type of ICs.

The companies that manufacture these are: -
Texas Instruments
Philips
Fairchild Semiconductor
Motorola

Fundamental Concepts of Digital Electronics

re No.	Deacr
7400	Ouad 2 -imput NAMOM gates
7402	Quad 2-input NOR gates
7404	Hex inverters
7408	Quad 2-input AND gates
7410	Triple 3 -input NAND gates
7411	Triple 3-input AND gates
7420	Dual 4-input NAND gates
7421	Dual 4-input AND gates
7427	Triple 3-input NOR gates
7430	8-input NAND gate
7432	Quad 2-input OR gates
7486,74386	Quad EX-OR gates
74133	13-imput NAND gate
74135	Ouad FX-OR
74260	Quad EX-OR / NOR gates
1 NOTE 8 PRO	Dual 5 -input NOR gates

Fundamental Concepts of Digital Electronics

