
Rotation about single bond of butane to
interconvert one conformation to another. The
gauche conformation on the right is a conformer,
while the eclipsed conformation on the left is a
transition state between conformers. Above:
Newman projection; below: depiction of spatial
orientation.

Conformational isomerism
In chemistry, conformational isomerism is a form of
stereoisomerism in which the isomers can be
interconverted just by rotations about formally single
bonds (refer to figure on single bond rotation). While any
two arrangements of atoms in a molecule that differ by
rotation about single bonds can be referred to as different
conformations, conformations that correspond to local
minima on the potential energy surface are specifically
called conformational isomers or conformers.[1]

Conformations that correspond to local maxima on the
energy surface are the transition states between the local-
minimum conformational isomers. Rotations about single
bonds involve overcoming a rotational energy barrier to
interconvert one conformer to another. If the energy
barrier is low, there is free rotation[2] and a sample of the
compound exists as a rapidly equilibrating mixture of
multiple conformers; if the energy barrier is high enough
then there is restricted rotation, a molecule may exist for a
relatively long time period as a stable rotational isomer
or rotamer (an isomer arising from hindered single-bond
rotation). When the time scale for interconversion is long
enough for isolation of individual rotamers (usually arbitrarily defined as a half-life of interconversion of 1000
seconds or longer), the isomers are termed atropisomers (see: atropisomerism).[1][3][4] The ring-flip of
substituted cyclohexanes constitutes another common form of conformational isomerism.

Conformational isomers are thus distinct from the other classes of stereoisomers (i. e. configurational isomers)
where interconversion necessarily involves breaking and reforming of chemical bonds.[5] For example, L/D-
and R/S- configurations of organic molecules have different handedness and optical activities, and can only be
interconverted by breaking one or more bonds connected to the chiral atom and reforming a similar bond in a
different direction or spatial orientation. They also differ from geometric (cis/trans) isomers, another class of
stereoisomers, which require the π-component of double bonds to break for interconversion. (Although the
distinction is not always clear-cut, since certain bonds that are formally single bonds actually have double bond
character that becomes apparent only when secondary resonance contributors are considered, like the C–N
bonds of amides, for instance.) Due to rapid interconversion, conformers are usually not isolable at room
temperature.

The study of the energetics between different conformations is referred to as conformational analysis.[6] It is
useful for understanding the stability of different isomers, for example, by taking into account the spatial
orientation and through-space interactions of substituents. In addition, conformational analysis can be used to
predict and explain product selectivity, mechanisms, and rates of reactions.[7] Conformational analysis also
plays an important role in rational, structure-based drug design.
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Relative conformation energy diagram of butane as a function of
dihedral angle.[8] A: antiperiplanar, anti or trans. B: synclinal or
gauche. C: anticlinal or eclipsed. D: synperiplanar or cis.[1]
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Rotating their carbon–carbon bonds, the
molecules ethane and propane have three
local energy minima. They are
structurally and energetically equivalent,
and are called the staggered conformers.
For each molecule, the three substituents
emanating from each carbon–carbon
bond are staggered, with each H–C–C–H
dihedral angle (and H–C–C–CH3
dihedral angle in the case of propane)
equal to 60° (or approximately equal to
60° in the case of propane). The three
eclipsed conformations, in which the
dihedral angles are zero, are transition
states (energy maxima) connecting two equivalent energy minima, the staggered conformers.

The butane molecule is the simplest molecule for which single bond rotations result in two types of
nonequivalent structures, known as the anti- and gauche-conformers (see figure).

For example, butane has three conformers relating to its two methyl (CH3) groups: two gauche conformers,
which have the methyls ±60° apart and are enantiomeric, and an anti conformer, where the four carbon centres
are coplanar and the substituents are 180° apart (refer to free energy diagram of butane). The energy difference
between gauche and anti is 0.9 kcal/mol associated with the strain energy of the gauche conformer. The anti
conformer is, therefore, the most stable (≈ 0 kcal/mol). The three eclipsed conformations with dihedral angles
of 0°, 120°, and 240° are transition states between conformers.[6] Note that the two eclipsed conformations
have different energies: at 0° the two methyl groups are eclipsed, resulting in higher energy (≈ 5 kcal/mol) than
at 120°, where the methyl groups are eclipsed with hydrogens (≈ 3.5 kcal/mol).[9]

While simple molecules can be described by these types of conformations, more complex molecules require
the use of the Klyne–Prelog system to describe the different conformers.[6]

More specific examples of conformational isomerism are detailed elsewhere:

Ring conformation

Cyclohexane conformations, including with chair and boat conformations among others.
Cycloalkane conformations, including medium rings and macrocycles
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Equilibrium distribution of two conformers
at different temperatures given the free
energy of their interconversion.

Carbohydrate conformation, which includes cyclohexane conformations as well as other
details.

Allylic strain – energetics related to rotation about the single bond between an sp2 carbon and
an sp3 carbon.
Atropisomerism – due to restricted rotation about a bond.
Folding, including the secondary and tertiary structure of biopolymers (nucleic acids and
proteins).[10]

Akamptisomerism – due to restricted inversion of a bond angle.

Conformational isomers exist in a dynamic equilibrium, where
the relative free energies of isomers determines the population of
each isomer and the energy barrier of rotation determines the rate
of interconversion between isomers:[11]

where K is the equilibrium constant, ΔG° is the difference in
standard free energy between the two conformers in kcal/mol, R
is the universal gas constant (1.987×10−3 kcal/mol K), and T is
the system's temperature in kelvins. In units of kcal/mol at 298 K,

Thus, every 1.36 kcal/mol corresponds to a factor of about 10 in term of equilibrium constant at temperatures
around room temperature. (The "1.36 rule" is useful in general for estimation of equilibrium constants at room
temperature from free energy differences. At lower temperatures, a smaller energy difference is needed to
obtain a given equilibrium constant.)

Three isotherms are given in the diagram depicting the equilibrium distribution of two conformers at different
temperatures. At a free energy difference of 0 kcal/mol, this gives an equilibrium constant of 1, meaning that
two conformers exist in a 1:1 ratio. The two have equal free energy; neither is more stable, so neither
predominates compared to the other. A negative difference in free energy means that a conformer interconverts
to a thermodynamically more stable conformation, thus the equilibrium constant will always be greater than 1.
For example, the ΔG° for the transformation of butane from the gauche conformer to the anti conformer is
−0.47 kcal/mol at 298 K.[12] This gives an equilibrium constant is about 2.2 in favor of the anti conformer, or
a 31:69 mixture of gauche:anti conformers at equilibrium. Conversely, a positive difference in free energy
means the conformer already is the more stable one, so the interconversion is an unfavorable equilibrium
(K < 1). Even for highly unfavorable changes (large positive ΔG°), the equilibrium constant between two
conformers can be increased by increasing the temperature, so that the amount of the less stable conformer
present at equilibrium increases (although it always remains the minor conformer).

The fractional population distribution of different conformers follows a Boltzmann distribution:[13]

Free energy and equilibria of conformational isomers
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Boltzmann distribution % of lowest energy conformation in
a two component equilibrating system at various
temperatures (°C, color) and energy difference in kcal/mol
(x-axis)

The left hand side is the proportion of conformer
i in an equilibrating mixture of M conformers in
thermodynamic equilibrium. On the right side, Ek
(k = 1, 2, ..., M) is the energy of conformer k, R is
the molar ideal gas constant (approximately equal
to 8.314 J/(mol·K) or 1.987 cal/(mol·K)), and T is
the absolute temperature. The denominator of the
right side is the partition function.

The effects of electrostatic and steric interactions
of the substituents as well as orbital interactions
such as hyperconjugation are responsible for the relative stability of conformers and their transition states. The
contributions of these factors vary depending on the nature of the substituents and may either contribute
positively or negatively to the energy barrier. Computational studies of small molecules such as ethane suggest
that electrostatic effects make the greatest contribution to the energy barrier; however, the barrier is traditionally
attributed primarily to steric interactions.[14][15]

Contributions to rotational energy barrier

In the case of cyclic systems, the steric effect and contribution to the free energy can be approximated by A
values, which measure the energy difference when a substituent on cyclohexane in the axial as compared to
the equatorial position.

The short timescale of interconversion precludes the separation of conformational isomers in most cases.
Atropisomers are conformational isomers which can be separated due to restricted rotation.[16]

Protein folding also generates stable conformational isomers which can be observed. The Karplus equation
relates the dihedral angle of vicinal protons to their J-coupling constants as measured by NMR. The equation
aids in the elucidation of protein folding as well as the conformations of other rigid aliphatic molecules.[17]

The equilibrium between conformational isomers can be observed using a variety of spectroscopic techniques.

In cyclohexane derivatives, the two chair conformers interconvert with rapidly at room temperature, with
cyclohexane itself undergoing the ring-flip at a rates of approximately 105 ring-flips/sec, with an overall
energy barrier of 10 kcal/mol (42 kJ/mol), which precludes their separation at ambient temperatures.[18]

Factors contributing to the free
energy of conformers

Isolation or observation of the conformational isomers
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However, at low temperatures below the coalescence point one can directly monitor the equilibrium by NMR
spectroscopy and by dynamic, temperature dependent NMR spectroscopy the barrier interconversion.[19]

The dynamics of conformational (and other kinds of) isomerism can be monitored by NMR spectroscopy at
varying temperatures. The technique applies to barriers of 8–14 kcal/mol, and species exhibiting such
dynamics are often called "fluxional".

Besides NMR spectroscopy, IR spectroscopy is used to measure conformer ratios. For the axial and equatorial
conformer of bromocyclohexane, νCBr differs by almost 50 cm−1.[18]

Reaction rates are highly dependent on the conformation of the reactants. In many cases the dominant product
arises from the reaction of the less prevalent conformer, by virtue of the Curtin-Hammett principle. This is
typical for situations where the conformational equilibration is much faster than reaction to form the product.
The dependence of a reaction on the stereochemical orientation is therefore usually only visible in
configurational isomers, in which a particular conformation is locked by substituents. Prediction of rates of
many reactions involving the transition between sp2 and sp3 states, such as ketone reduction, alcohol
oxidation or nucleophilic substitution is possible if all conformers and their relative stability ruled by their strain
is taken into account.[20]

One example with configurational isomers is provided by elimination reactions, which involve the
simultaneous removal of a proton and a leaving group from vicinal or antiperiplanar positions under the
influence of a base.

Base-induced bimolecular dehydrohalogenation (an E2 type
reaction mechanism). The optimum geometry for the
transition state requires the breaking bonds to be
antiperiplanar, as they are in the appropriate staggered
conformation

The mechanism requires that the departing atoms or groups follow antiparallel trajectories. For open chain
substrates this geometric prerequisite is met by at least one of the three staggered conformers. For some cyclic
substrates such as cyclohexane, however, an antiparallel arrangement may not be attainable depending on the
substituents which might set a conformational lock.[21] Adjacent substituents on a cyclohexane ring can
achieve antiperiplanarity only when they occupy trans diaxial positions.

One consequence of this analysis is that trans-4-tert-butylcyclohexyl chloride cannot easily eliminate but
instead undergoes substitution (see diagram below) because the most stable conformation has the bulky t-Bu
group in the equatorial position, therefore the chloride group is not antiperiplanar with any vicinal hydrogen.
The thermodynamically unfavored conformation has the t-Bu group in the axial position, which is higher in
energy by (see A value) more than 5 kcal/mol.[22] As a result, the t-Bu group "locks" the ring in the
conformation where it is in the equatorial position and substitution reaction is observed. On the other hand, cis-
4-tert-butylcyclohexyl chloride undergoes elimination because antiperiplanarity of Cl and H can be achieved
when the t-Bu group is in the favorable equatorial position.

Conformation-dependent reactions
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Thermodynamically unfavored conformation of trans-4-tert-
butylcyclohexyl chloride where the t-Bu group is in the axial
position exerting 7-atom interactions.

The trans isomer can attain antiperiplanarity only via the
unfavored axial conformer; therefore, it does not eliminate.
The cis isomer is already in the correct geometry in its
most stable conformation; therefore, it eliminates easily.

The repulsion between an axial t-butyl group and hydrogen atoms in the 1,3-diaxial position is so strong that a
cyclohexane will revert to a twisted boat conformation. The strain in cyclic structures is usually characterized
by deviations from ideal bond angles (Baeyer strain), ideal torsional angles (Pitzer strain) or transannular
(Prelog )interactions.

Anomeric effect

See also
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