dπ–pπ Bonds

This is a special type of bonding found in the molecular species having a central atom valence shell and surrounding groups with empty, partially or completely filled p or d orbitals. It direct overlap resulting in the σ -bonding, $d\pi$ – $p\pi$ bonds are formed by the sidewise overlap. The of the orbitals from central atom participating in the formation of $d\pi$ – $p\pi$ bond can be obtained by refereducible components of the reducible representation based upon the vectors-set perpendicular to for a particular geometry.

➤ Molecules with Central Atom Having d-Valence Shell for Sidewise Overlap

Some of the most well-documented cases in main-group chemistry are AB₄ type mo SiO₄⁴⁻, SO₄²⁻, PO₄³⁻, ClO₄⁻, SiF₄; which are found to have A–O bond lengths too short for the confirming a $d\pi$ – $p\pi$ overlap responsible for this anomaly.

Figure 21. The $d\pi$ – $p\pi$ bonding in SO_4^{2-} ion.

Pi bonding refers to sidewise overlapping of orbitals. Therefore d-pi- p-pi refers to when one d orbital and p orbital of another atom overlap sidewise to form a pi bond.

Yes phosphorus shows $d\Pi - p\Pi$ in $POCl_3$ or similar

POCl₃ is a sp³ hybridized, so 1 s and 3 p orbitals will used for making sigma bonds. But there is still one pi bond between P and O, So d orbital of phosphorus will be used for sidewise overlapping with an p orbital of Oxygen.