Problem 1:

The chemical reactivity of lanthanides resemble to which other elements of the periodic table?

Solution:

The chemical reactivity of the starting lanthanides resemble calcium due to similar first and second ionization energy. But latter lanthanides resemble Al due to ability of showing +3 oxidation state and similarity in I.E.

Problem 2:

Enthalpies of atomization of transition elements are higher than those of alkali and alkaline earth metals. Explain.

Solution:

The number of unpaired electrons in transition elements are more when compared to these in alkali and alkaline earth metals. As a result, the metallic bonds in transition metals are stronger and enthalpies of atomization are higher than those of alkali and alkaline earth metals.

Problem 3:

Explain the following:

- (a) Chromium is a typical metal while mercury is a liquid metal.
- (b) Zinc readily liberates H_2 from cold dil. H_2SO_4 but not form cold conc. H_2SO_4 .

Solution:

 H_2O

- (a) Chromium has five unpaired electrons in its d-orbitals which make its metallic bond very strong, whereas in mercury there is no unpaired d-electrons so its metallic bond is very weak, hence it is a liquid.
- (b) Since, conc. H_2SO_4 act as an oxidizing agent hence does not evolve H_2 when it reacts with zinc.

$$Zn + 2H_2SO_4 ----- \rightarrow ZnSO_4 + SO_2 +$$

Problem 5:

 Cu^{+} ion has $3d^{10}4s^{0}$ configuration and colourless but $Cu_{2}O$ is red and $Cu_{2}S$ is blac Explain.

Solution:

 Cu^{+} ion has $3d^{10}4s^{0}$ configuration, i.e. it han no unpaired electron hence there is no d-d transition possible and it is colourless. But $Cu_{2}O$ and $Cu_{2}S$ are coloured due to charge transfer of electrons from O^{2} or O^{2} to the vacant orbital of O^{2}

Problem 6:

While Cu, Ag and Au are considered as transition elements but Zn, Cd and Hg are not considered as transition elements although all the mentioned elements have complete d-orbitals. Explain.

Solution:

Although Cu, Ag and Au have their d – orbitals complete in the elemental state. They do have incomplete d orbitals in their compound state. So they are included in transition elements.

$$Cu^{+2} = 3d^9$$

$$Au^{+3} = 5d^{8}$$

Ta

Zn, Cd and Ag have their d-orbitals