STRUCTURE

- Network of filamentous proteins
 - · filaments formed from a few proteins
 - · monomer protein forms polymer filaments
- located in nucleus and cytoplasmic compartments
 - · not within organelles
- location based upon cellular function
- named on basis of physical size

The Cytoskeleton

- The eukaryotic cell is a 3D structure. It has a cytoskeleton anchored to proteins in the plasma membrane
- These proteins both maintain shape and allow movement
- The cytoskeleton is a dynamic structure, as the microfilaments and microtubules can depolymerise and repolymerise very easily

FUNCTIONS:

- Ifunctions based upon the filaments physical properties
- ☐integral strength
- Cell shape
- □ motility
 - 1. inside the cell
 - 2. whole cell
 - 3. motor proteins associated with 2 filament systems

Cytoskeletal filaments:

- 1. Microfilaments
- 2. Microtubules
- Intermediate filaments

INTERMEDIATE FILAMENTS

- >different cell types, different intermediate filaments
- >all eukaryotes nuclear cytoskeleton the same
- resist stresses applied externally to the cell cytoplasm
- ≥10-nanometer diameter
- >cross-linking proteins allow interactions with other cytoskeletal networks

- ➤intermediate filament associated proteins (IFAPs)
 ➤coordinate interactions between intermediate filaments and other cytoskeletal elements and organelles,
- >human disorders
 - >mutations weaken structural framework
 - >increase the risk of cell rupture

Some functions of Intermediate Filaments:

- Intermediate filaments provide mechanical strength and resistance to shear stress.
- There are several types of intermediate filaments, each constructed from one or more proteins characteristic of it.