ACIDS - Hydrogen containing substances which dissociate in solution to release H⁺ - ❖ Any ionic or molecular substance that can act as a proton (H+) donor. - Strong acid: HCI, H₂SO4, H₃PO4. - ❖Weak acid : H₂CO3, CH₃COOH. #### **Metabolic Sources of Acids** - VOLATILE ACIDS (20,000mEq/day): - ➤ Produced by oxidative metabolism of CHO, Fat, Protein - ➤ Average 15000-20000 mmol of CO₂ per day - ➤ Excreted through LUNGS as CO₂ gas - FIXED ACIDS (1 mEq/kg/day) - Acids that do not leave solution, once produced they remain in body fluids until eliminated by KIDNEYS Eg: Sulfuric acid, Phosphoric acid, Organic acids - ✓ Are most important fixed acids in the body - ✓ Are generated during catabolism of: - # amino acids(oxidation of sulfhydryl groups of cystine, methionine) - # Phospholipids(hydrolysis) - # nucleic acids #### **ACIDS** - Physiologically important acids include: - Carbonic acid (H₂CO₃) - Phosphoric acid (H₃PO₄) - Pyruvic acid (C₃H₄O₃) - Lactic acid (C₃H₆O₃) Lactic acid Pyruvic acid Phosphoric acid ### **Bases** - > Bases can be defined as: - ▼ A proton (H*) acceptor - ◆Any ionic or molecular substance that can act as a proton acceptor. - ♥Strong alkali: NaOH, KOH. - ♥Weak alkali : NaHCO₃, NH₃, CH₃COONa. ## **Bases** - Physiologically important bases include: - Bicarbonate (HCO₃⁻) - Biphosphate (HPO₄-2) Biphosphate # **Buffer** - Ability of an acid-base mixture to resist sudden changes in pH is called its buffer. - Buffer is a solution of weak acid and its corresponding salt. - Buffer resists a change in pH when a small amount of acid or base is added to it. - By buffering mechanism a strong acid (or base) is replaced by a weaker one.