
ACIDS

- Hydrogen containing substances which dissociate in solution to release H⁺
- ❖ Any ionic or molecular substance that can act as a proton (H+) donor.
 - Strong acid: HCI, H₂SO4, H₃PO4.
 - ❖Weak acid : H₂CO3, CH₃COOH.

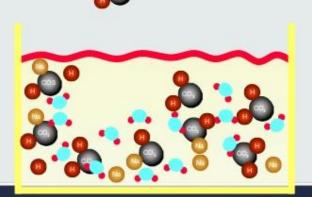
Metabolic Sources of Acids

- VOLATILE ACIDS (20,000mEq/day):
- ➤ Produced by oxidative metabolism of CHO, Fat, Protein
- ➤ Average 15000-20000 mmol of CO₂ per day
- ➤ Excreted through LUNGS as CO₂ gas
- FIXED ACIDS (1 mEq/kg/day)
- Acids that do not leave solution, once produced they remain in body fluids until eliminated by KIDNEYS

Eg: Sulfuric acid, Phosphoric acid, Organic acids

- ✓ Are most important fixed acids in the body
- ✓ Are generated during catabolism of:
 - # amino acids(oxidation of sulfhydryl groups of cystine, methionine)
 - # Phospholipids(hydrolysis)
 - # nucleic acids

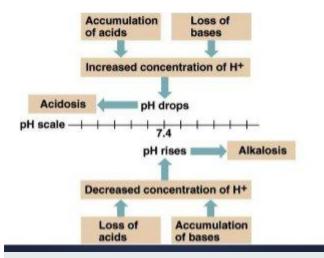
ACIDS


- Physiologically important acids include:
 - Carbonic acid (H₂CO₃)
 - Phosphoric acid (H₃PO₄)
 - Pyruvic acid (C₃H₄O₃)
 - Lactic acid (C₃H₆O₃)

Lactic acid
Pyruvic acid

Phosphoric acid

Bases


- > Bases can be defined as:
 - ▼ A proton (H*) acceptor
 - ◆Any ionic or molecular substance that can act as a proton acceptor.
 - ♥Strong alkali: NaOH, KOH.
 - ♥Weak alkali : NaHCO₃, NH₃, CH₃COONa.

Bases

- Physiologically important bases include:
 - Bicarbonate (HCO₃⁻)
 - Biphosphate (HPO₄-2)

Biphosphate

Buffer

- Ability of an acid-base mixture to resist sudden changes in pH is called its buffer.
- Buffer is a solution of weak acid and its corresponding salt.
- Buffer resists a change in pH when a small amount of acid or base is added to it.
- By buffering mechanism a strong acid (or base) is replaced by a weaker one.