Probability

Addition Theorem

Addition Theorem of Probability

- Addition Theorem: If two events A and B are mutually exclusive, the probability of occurrence of either A or B is the sum of the individual probability of A and B. Symbolically,
- $P(A$ or $B)=P(A)+P(B)$
- The addition theorem is also known as the theorem of total probability.
- Proof of the Theorem: If an event A can happen in $\boldsymbol{a}_{\boldsymbol{1}}$ ways and B can happen in \boldsymbol{a}_{2} ways, then the number of ways in which either event can happen is $\boldsymbol{a}_{\mathbf{1}}+\boldsymbol{a}_{\mathbf{2}}$.

Addition Theorem of Probability

- If total number of possible events is \mathbf{n}, then by definition the probability of either first or the second event happening is

But,

$$
\frac{a_{1}+a_{2}}{n}=\frac{a_{1}}{n}+\frac{a_{2}}{n}
$$

and, $\quad \frac{a_{2}}{n}=P(B)$
Hence, $\quad \mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$,
The theorem can be extended to three or more mutually exclusive events.
Thus, $\quad \mathrm{P}(\mathrm{A}$ or B or C$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})$. Proved

Addition Theorem of Probability

- Example: A bag contains 30 balls numbered from 1 to 30 . One ball is drawn at random, find the probability that the number of the ball will be multiple of 5 or 9 .
- Solution: Number of multiple of $5($ Event $A)=(5,10,15,20,25$ and 30$)=6$

Number of multiple of $9($ Event $B)=(9,18$, and 27$)=3$
Total number of events $=30$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})=\frac{6}{30} \\
& \mathrm{P}(\mathrm{~B})=\frac{3}{30} \\
& \mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B}) \\
& \frac{6}{30}+\frac{3}{30}=\frac{9}{30}=\frac{3}{10} \text { Ans }
\end{aligned}
$$

$$
\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B}) \quad \text { (Since the events are mutually exclusive) }
$$

Addition Theorem of Probability

- Example: A person can hit a target in 3 out 4 shots, whereas another person can hit the target in 2 out of 3 shots. Find the probability of the targets being hit at all when they both try.
- Solution:

The probability that the first person hit the target $=3 / 4$
The probability that the second person hit the target $=2 / 3$

Addition Theorem of Probability

- The events are not mutually exclusive because both of them may hit the target. Hence,

$$
\begin{aligned}
P(A \text { or } B) & =P(A)+P(B)-P(A \text { and } B) \\
= & \left(\frac{3}{4}+\frac{2}{3}\right)-\left(\frac{3}{4} \times \frac{2}{3}\right) \\
= & \frac{17}{12}-\frac{6}{12}=\frac{11}{12} \text { Ans }
\end{aligned}
$$

